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Abstract

A periodic focusing system is reduced to an equivalent
continuous focusing one for a beam with space charge by
averaging over the lattice oscillations. The Lie transform
perturbation method is used to canonically transform the
laboratory phase space variables to slowly oscillating vari-
ables. A similar averaging over the lattice period was per-
formed by R.C. Davidson, H. Qin and P.J. Channell [Phys
Rev ST 2, 074401 (1999)] using the Poincare-Von Zie-
pel perturbation method. The Lie transform method of-
fers certain advantages in that it retains the original form of
the Hamiltonian before beginning the process of canonical
transformation to a slowly oscillating coordinate frame. On
the other hand, the Poincare-Von Ziepel method requires
one to make a Taylor expansion of the Hamiltonian in terms
of the as yet undetermined expansion terms of the trans-
formed phase space variables. The Lie transform method
avoids such a Taylor expansion and so the formulation is
less tedious. It will be demonstrated that performing the
reverse transformation to the original phase space variables
is also straight forward in the Lie transform method.

INTRODUCTION

In many applications of dynamical systems, one is pri-
marily interested in the long time behavior compared to
certain fast time scales over which the system evolves.
Hamiltonian averaging techniques have been effective in
obtaining a set of equations that contain only long-time
processes and retain the effects produced by the short time
scale processes only up to a desired approximation. The
standard procedure is to perform a perturbation canonical
transformation to a slowly oscillating reference frame. The
Lie Transform perturbation method is more convenient for
such a procedure when compared to methods based on the
Hamilton-Jacobi transformation. A Lie transformation can
be expressed in Poisson bracket notation as an analogy to
Hamilton’s equation with respect to a continuously varying
parameter representing “Time” and a Lie generating func-
tion representing the “Hamiltonian”. This enables one to
develop the whole formulation in Poisson brackets form
making inverse transformations at every intermediate stage
unnecessary because the results of Poisson brackets are in-
variant under canonical transformations.

TRANSFORMATION EQUATIONS IN
TERMS OF PERTURBATION

EXPANSIONS

A Lie Transformation is defined in terms of a Lie gen-
erating functionw which satisfies the Poisson bracket rela-
tion,

dZ

dε
= {Z(z), w(z, t, ε)} (1)

This describes a canonical transformation from the phase
space vectorsz to Z. The transformed variable,Z varies
continuously with respect to the time like parameterε with
w being analogous to the Hamiltonian. The symplectic
structure of the transformation guarantees that the trans-
formation is canonical for all values ofε. A Lie operator is
defined byL = {w, }. A transformation operator T trans-
forms any function such thatTf(z, t) = f(Z(z, t), t). T
is equivalent to the “evolution” operator with respect to the
“time” ε. For the identity function, this would simply be,
Tz = Z(z, t).

To obtain explicit equations for each perturbation term,
every physical quantity and operator is expressed as a
power series inε known as the Deprit power series [3].
This would beh(z, t, ε) =

∑∞
n=0 εnhn(z, t), H(z, t, ε) =∑∞

n=0 εnHn(z, t), T (t, ε) =
∑∞

n=0 εnTn(t), L(w) =∑∞
n=0 εnLn, w(z, t, ε) =

∑∞
n=0 εnwn+1(z, t). Where,h

represents the original Hamiltonian andH represents the
transformed Hamiltonian. Using these expansions, equa-
tions for each order ofε can be derived to determine the
transformed HamiltonianH with respect tow andh, and
the transformation operatorT with respect to the opera-
tor L. A rigorous derivation of these relationships can be
found in Ref. [4] and a more brief one in Ref. [5]. These
derivations are based on the work by Dewar [2]. In prin-
ciple, the relationships can be derived up to any order. We
give them here up to third order. In order to perform a time
averaging, we need to seth0 = 0 [7]. Using this, equations
to determine the transformed Hamiltonian up to third order
are,

H0 = h0 = 0 (2)

∂w1

∂t
= H1 − h1 (3)

∂w2

∂t
= 2(H2 − h2) − L1(H1 + h1) (4)

∂w3

∂t
= 3(H3 − h3) − L1(H2 + h2)

−L2(H1 +
1
2
h1) −

1
2
L2

1(h1) (5)
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The expansion terms of the inverse transformation oper-
atorT−1 are given below up to third order. They are,

T−1
0 = I (6)

T−1
1 = L1 (7)

T−1
2 =

1
2
L2 +

1
2
L2

1 (8)

T−1
3 =

1
3
L3 +

1
6
L1L2 +

1
3
L2L1 +

1
6
L3

1 (9)

APPLICATION TO AN INTENSE BEAM IN
A LINEAR FOCUSING FIELD

The analysis in this section considers a thin, long non-
neutral beam traveling with a constant axial velocity. The
charged particles are subjected to a focusing force of the
form −[κx(s)xêx + κy(s)yêy]. The axial distances, is
equivalent to time since the beam is assumed to be prop-
agating at constant velocity. In normalized units (see for
example Ref. [6]), the Hamiltonian for such a system in the
transverse phase space(x, y, x′, y′) is given by

h =
1
2
(x′2 + y′2) +

1
2
κx(s)x2 +

1
2
κy(s)y2 + ψ(x, y, s)

(10)
The oscillation of the lattice functionκ(s) is considered to
be much faster than the oscillation of the space charge po-
tentialψ(x, y, s). The aim here is to apply the perturbation
theory of the previous section to average over the lattice os-
cillations. As mentioned in the previous section, we to set
h0 = 0. The Hamiltonianh is considered to be of the same
order as the parameterε. So, we haveh1 = h, h2 = 0, and
h3 = 0. For this application of a charged particle beam,
where the aim is to find an equivalent continuously focus-
ing system, it is sufficient to carry out the procedure up to
third order [1, 8].

The given Hamiltonian is now applied to Eqs. (2 - 5). In
which everything is expressed in terms of the transformed
variables. Equation (2) givesH0 = 0, and Eq. (3) gives

∂w1

∂s
= H1 −

1
2
(X ′2 + Y ′2)

−1
2
κx(s)X2 − 1

2
κy(s)Y 2 − ψ(X,Y, s) (11)

There are two unknown expressions in this equation. They
are,H1 andw1 whereH1 needs to be chosen such that it
retains only the slowly oscillating terms and cancels terms
with a nonzero value when averaged over fast oscillations.
This ensures thatw1 averages to zero over fast oscillations
which is required in order for the perturbation scheme to be
secular [4]. So,

H1 =
1
2
(X ′2 +Y ′2)+

1
2
〈κx〉X2 +

1
2
〈κy〉Y 2 +ψ(X,Y, s),

(12)
where the angle brackets represent an average over a lattice
periodS. That is,

〈...〉 =
1
S

∫ S

0

ds(...) (13)

Hereafter we assume that〈κx,y〉 = 0 which is true for most
practical applications. Since the expansion terms ofw ap-
pear in the form of derivatives in the transformation equa-
tions, it is sufficient to evaluate the indefinite integral with
respect tos. Doing this for Eq. (11) gives,

w1 = −1
2
κI

x(s)X2 − 1
2
κI

y(s)Y 2 (14)

The Roman numerical superscripts represent an indefinite
integral overs. Similarly, a superscript “II” will indicate a
double integration overs and so on.

Moving now to the second order perturbation equation
which is Eq. (4), we get

∂w2

∂s
= 2H2 + 2κI

x(s)XX ′ + 2κI
y(s)Y Y ′ (15)

Since both the terms on the right side are fast oscillating
terms and average to zero, we need to setH2 = 0. Inte-
grating with respect tos yields

w2 = 2(κII
x (s)XX ′ + κII

y (s)Y Y ′) (16)

We now move to the third order equation which gives,

∂w3

∂s
= 3(κII

x (s)X
∂

∂X
+ κII

y (s)Y
∂

∂Y
)ψ(X,Y, s)

+3H3 − 3κII
x (s)X ′2 − 3κII

y (s)Y ′2

+2κII
x (s)κx(s)X2 + 2κII

y (s)κy(s)Y 2

−1
2
(κI

x(s))2X2 − 1
2
(κI

y(s))2Y 2 (17)

Once again,H3 needs to be chosen so that it cancels terms
with nonzero averages over the lattice periods. The sec-
ond term on the right side of Eq. (17) is a product between
slow and fast oscillating terms. Up to the desired order, this
product averages to zero over fast oscillations [7].

H3 =
1
3
〈1
2
(κI

x)2 − 2κII
x κx〉X2 +

1
3
〈1
2
(κI

y)2 − 2κII
y κy〉Y 2

(18)
Up to third order, the transformed Hamiltonian given by

H = H1 + H2 + H3 represents an intense beam with con-
tinuous focusing. This can be expressed as

H =
1
2
(X ′2 + Y ′2) +

1
2
(KXX2 + KY Y 2) + ψ(X,Y, s)

(19)
where

KX =
1
3
〈(κI

x)2 − 4κII
x κx〉 (20)

and

KY =
1
3
〈(κI

y)2 − 4κII
y κy〉 (21)

To determinew3, we need to integrate Eq. (17). Retain-
ing only terms of third order inε, the integration yields

w3 = 3κIII
x (s)X

∂ψ

∂X
+ 3κIII

y (s)Y
∂ψ

∂Y

−3κIII
x (s)X ′2 − 3κIII

y (s)Y ′2 (22)
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To transform back to the laboratory phase space vari-
ables, we make use of the operatorT−1 given by Eqs.(6
- 9). The transformation will be performed up to third or-
der. We may express the transformation in the form of a
perturbation expansion as

x = T−1X = X + x1 + x2 + ..... (23)

y = T−1Y = Y + y1 + y2 + ..... (24)

x′ = T−1X ′ = X ′ + x′
1 + x′

2 + ... (25)

y′ = T−1Y ′ = Y ′ + y′
1 + y′

2 + ... (26)

The zeroth order termsX, Y , X ′, Y ′ represent the fact
thatT−1

0 = I, the identity transformation. The first order
terms are obtained by operatingT−1

1 which, from Eq. (7)
is simply the operatorL1. So,

x1 = {w1,X} = 0 (27)

y1 = {w1, Y } = 0 (28)

x′
1 = {w1,X

′} = −κI
x(s)X (29)

y′
1 = {w1, Y

′} = −κI
y(s)Y (30)

Similarly, the second order terms can be got from Eq. (8)
by operatingT−1

2 on (X,X ′, Y, Y ′). These are,

x2 =
1
2
(L2 + L2

1)X = −κII
x (s)X (31)

y2 =
1
2
(L2 + L2

1)Y = −κII
x (s)X (32)

x′
2 =

1
2
(L2 + L2

1)X
′ = κII

x (s)X ′ (33)

y′
2 =

1
2
(L2 + L2

1)Y
′ = κII

y (s)Y ′ (34)

The third order terms will be determined by the operator
T−1

3 given by Eq. (9). This gives,

x3 = 2κIII
x X ′ (35)

y3 = 2κIII
y Y ′ (36)

x′
3 = κIII

x

∂ψ

∂X
+ κIII

x X
∂2ψ

∂X2
(37)

y′
3 = κIII

y

∂ψ

∂Y
+ κIII

y Y
∂2ψ

∂Y 2
(38)

The expressions forw1, w2 andw3 have been made use
of in the form of Poisson brackets. They carry the trans-
formed variables when performing an inverse transforma-
tion. Since Poisson brackets are canonically invariant,w
could carry either variables depending on the operation that
is being performed.

In this section, we have reduced a general linear focusing
system to a continuous focusing system for an intense beam
by canonically transforming to a slowly oscillating refer-
ence frame. The equivalent continuous focusing system

can offer a variety of advantages. It can be solved more ef-
ficiently numerically because it can allow larger time steps.
The transformed system can also also have symmetries that
can reduce its dimensionality, for example, angular mo-
mentum is conserved for an alternating gradient focusing
system with an azimuthally symmetric charge distribution.
The averaged Hamiltonian is time independent, and so it
can allow self consistent equilibrium where the phase space
density is a function of the transformed Hamiltonian. That
is, F0(X,Y,X ′, Y ′) = F (K). This would be a near equi-
librium solution in the laboratory frame. In this section, re-
lationships were also derived to transform the system back
to the laboratory frame after performing the required cal-
culations in the transformed reference frame,

SUMMARY

This paper demonstrates the use of the Lie transforma-
tion perturbation theory to perform a time averaging over
fast oscillations for a beam with space charge in a periodic
focusing channel. This derivation was previously done us-
ing the Poincare - Von Ziepel method Ref [1]. This deriva-
tion has the advantage that it does not assume the space
charge to satisfy any specific equation like Poisson’s or
Maxwell’s equation unlike those in Refs. [8, 9, 7]. In ad-
dition to that, the transformed Hamiltonian and the inverse
transformation of phase space variables can be obtained in
explicit form. The Lie transformation method greatly sim-
plifies the the algebra especially when the external force
term of the Hamiltonian has a complex form having mixed
variables like in nonlinear focusing systems. It does not re-
quire one to Taylor expand the Hamiltonian and does not
require one to perform a reverse transformation at every
intermediate stage. Moreover, the reverse transformation
needs be done only if required. In conclusion, we state that
although the method was applied to an intense beam with
linear focusing, its application is more general.
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