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Abstract 
 The transport of sheet electron beams is an 

important issue in the development of high-power RF 
generators because large amounts of current can be 
achieved at reduced space-charge density. In this paper 
we analyze equilibrium configurations for the transport of 
sheet electron beams in tapered solenoidal focusing 
fields. In particular, we use the generalized envelope 
equations obtained for the evolution of space-charge-
dominated beams propagating through a general linear 
focusing channel [R. Pakter and C. Chen, Phys. Rev. E, 
62, 2789 (2000)] to derive an optimal focusing field 
profile for sheet beam transport. Analytic solutions based 
on multi-time scale perturbation theory are found and 
compared to numerical simulations. 

INTRODUCTION 
The improvement of high-power vacuum microwave 

sources plays a crucial role in the development of the new 
generation of high-gradient, high-frequency particle 
accelerators [1]. As scaling up the microwave sources to 
higher frequencies, a significant difficulty is the need to 
transport intense beams through decreasing aperture sizes, 
because the RF circuit dimensions decrease with the 
wavelength. In this regard, the use of sheet electron 
beams seems a promising concept, since larger amounts 
of current can be transported at lower current densities by 
increasing the width of the beam, while keeping its height 
of the order the RF wavelength [2-4]. The main drawback 
on the use of sheet beams in comparison to the usual 
round beam is that the sheet beam may be more 
vulnerable to some instabilities in ordinary solenoidal 
focusing channels [5]. 

In this paper, we analyze the transport of sheet 
electron beams in solenidal focusing systems. In 
particular, we consider the case of tapered focusing fields, 
and search for field profiles leading to equilibrium 
solutions for the transport. Use is made of the generalized 
envelope equations obtained for the evolution of intense 
beams in general linear focusing systems [6] to derive an 
equation for the magnetic field profile as a function 
propagation distance. 

MODEL AND THE GENERALIZED 
ENVELOPE EQUATIONS 

In this section we review the generalized envelope 

equations [6], specializing to the transport in solenoidal 
focusing fields. Let us consider a thin, continuous, space-
charge-dominated beam propagating with constant axial 
velocity zbcêβ  through a solenoidal focusing field. Here, 

c  is the speed of light in vacuum. The focusing magnetic 
field is approximated by  

                ( ) ( ) ( ) ( )yxzzz yxsBsB eeexB ˆˆ
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where ctzs bβ==  is the axial coordinate, and the prime 

denotes derivative with respect to s . 
It has been shown in the paraxial approximation that 

there exists a class of solutions to steady-state cold-fluid 
equations [6], which, in general, describes corkscrewing 
elliptic beam equilibria for, space-charge-dominated 
beam propagating through the applied focusing magnetic 
field defined in Eq. (1).   The generalized beam envelope 
equations are [6] 
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where ( ) ( ) 22/ mcsqBs bbzz βγκ =  is the focusing 

parameters for the solenoidal and qudrupole-focusing 

magnetic fields, 2232 /2 mcNqK bbb βγ=  is the normalized 

self-field perveance, ( )sa , ( )sb , and ( )sθ  are the major 

radius, the minor radius, and the angle of rotation with 
respect to the laboratory frame of the ellipse that 
describes the cold-fluid corkscrewing elliptic beam 
equilibrium density illustrated in Fig. 1, and the variables 

( )sxα  and ( )syα  specify the corresponding equilibrium 

flow velocity as defined in Refs. 6. Here, m  and q  are 

the rest mass and charge of the particle, bN  is the number 

of particles per unit axial length, and ( ) 2/121
−−= bb βγ  is 

the relativistic mass factor. 
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In general, the envelope equations (2)-(6) are used to 
determine beam evolution for a given external focusing 
field. In the case of sheet electron beams in solenoidal 
focusing field to be discussed in the next section, we 
apply the generalized envelope equations to determine 
field profiles that lead to equilibrium beam transport, 
given the required constrains on the beam evolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: equilibrium density profile in the laboratory and 
rotating coordinate systems. 

SHEET BEAM TRANSPORT IN 
SOLENOIDAL FIELD 

In the case of sheet electron beams, the ellipsis that 
describes the equilibrium beam density has one of the axis 
much greater than the other, i.e. ba >> , and its is 
required that the beam does not rotate, such that the 
conditions 0)( =sθ , 0/)( =dssdθ  must be satisfied 

throughout the focusing channel. From Eq. (6) it is seen 
that this condition implies that ( )sa , ( )sb , ( )sxα  and 

( )syα  are not independent anymore, but must satisfy    

         2222
xy ba αα =    (7) 

for all s. Therefore, the task that we propose here is to 
determine a solenoidal focusing field profile that 
guarantees the condition imposed by Eq. (7).  

Using Eq. (7), and keeping only the leading order 
terms of ba / , the generalized envelope equations can be 
written as 
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where )(2)( ss zL κ=Ω  is the Larmor frequency, which 

is proportional to the focusing field strength. The set of 
equations (8)-(11) describe the evolution of a nonrotating 

sheet beam, where, specifically, the field profile )(sLΩ  is 

determined by Eq. (11).  
Examining Eqs. (8)-(11) one notices that the large 

disparity in the transverse beam length scales along the 
major and minor axis, ba >> , also leads to a large 
disparity in the longitudinal length scales involved in the 
evolution of the envelope variables. In particular, 
equations (9) and (10) describe fast variations for )(sb  

and )(sxα , whereas, equations (8) and (11) describe slow 

variations for )(sa  and )(sLΩ  [7]. Therefore, we can 

obtain approximate solutions to the envelope equations by 
first integrating the fast equations in time scales where the 
variations of the slow variables are negligible, and then 
solving the slow equations by averaging over the fast time 
scales.  

Assuming LΩ  constant, we directly integrate Eq. 

(10) to obtain             
                 ( ) =Ω+ Lxb α const.               (12) 

In principle, the above constant could vary on the slow-
time scale, however more detailed calculations show that 
it is a real constant. Physically, this constant is related to 
the differential rotation between the internal beam particle 
flow given by xα  (see Ref. 6) and the Larmor frequency. 

Here, we are interested in typical cases where the 
particles move with the Larmor frequency, such that the 
constant in Eq. (12) is equal to 0.  

Using Eq. (12) and assuming a  and LΩ  constants, 

we can solve Eq. (9) to find  
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which gives the evolution for the ellipsis minor radius. 
From Eq. (13) we notice that the fast-time scale is 
governed by the local Larmor frequency LΩ . 

Using Eqs. (12) and (13) in Eqs. (8) and (11), and 
averaging over the fast time scales, we obtain 
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Many aspects of sheet beam evolution in solenoidal 
focusing can be understood from Eqs. (14) and (15). First, 
the evolution of the slow variables is completely 
independent of fast variables, such that, as long as the 
two-time-scale analysis is valid, the field profile and the 
major ellipsis radius will be the same irrespective to the 
minor radius and internal beam flow detailed 
characteristics. Second, the focusing field strength must 
be proportional to the inverse of the square of the major 
radius in order to preserve the sheet beam from rotating. 
In fact, from Eq. (15) we obtain 
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where )0(aao =  and )0(LLo Ω=Ω  are the initial 

conditions at the entrance of the focusing channel. Third, 
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the major radius evolution is governed exclusively by 
space-charge forces which are always defocusing. Hence, 
to increase the interaction region its is convenient to inject 
a converging beam with 0|/ 0 <≡′ =so dsdaa . The 

particular value of oa ′  for a specific arrangement can be 

calculated with the aid of Eq. (14). Multiplying Eq. (14) 
by dsda /  and integrating leads to 
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Let us consider a case where we inject in the focusing 
channel a beam with major radius oa , let the beam 

converge to a minimum major radius mina , and extract the 

beam when its major radius returns to its initial value; i.e., 

oaSa =)( , where S  is the length of the focusing channel. 

In this situation, the required initial beam convergence is 
given by Eq. (17) as 
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Fourth, the focusing channel length S  can also be 
estimated from Eq. (14) as 
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In reality, S  is a measure of the slow time scale 
associated with the dynamics of )(sa  and )(sLΩ . 

Recalling that the fast time scale is governed by the 
Larmor frequency, the condition of validity for the 
multiple time-scales analysis applied here is 1>>Ω SL , 

with the bar indicating average values. Using Eq. (19) the 
condition roughly leads to     

          22aK LΩ<< ,               (20) 

which informs that for a given focusing field and beam 
size, there is a limit in the total beam intensity. In practice 
this is not a strong constrain because the whole purpose of 
using sheet beams is being able to reduce beam intensity 
by spreading it over larger sizes by increasing the ellipsis 
major radius. Finally, using Eqs. (14) and (16) we can 
write down  
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which gives the optimal solenoidal focusing field profile 
)(sLΩ  that leads to an equilibrium nonrotating sheet 

beam propagation. 
The above results were tested against solutions 

obtained by numerically integrating the generalized 
envelope equations using the focusing field profile 
prescribed by Eq. (21). A good agreement was found 
between the numerical solutions and the estimates from 
the multiple-time-scale analysis. In particular, considering 

moderately intense sheet electron beams with 210~ −K  
and major radius of a few centimeters, transported along 
the typical longitudinal length scales of high-power 
vacuum microwave sources (on the order of 30 cm), 
presented very small rotation angles on the order of    

410−  rad. 

CONCLUSIONS 
We have analyzed equilibrium configurations for the 

transport of sheet electron beams in tapered solenoidal 
focusing fields. In particular, using the generalized 
envelope equations obtained for the evolution of space-
charge-dominated beams propagating through a general 
linear focusing channel, we derived an equation that 
provides an optimal focusing field profile for nonrotating 
sheet beam transport. Analytic solutions based on multi-
time scale perturbation theory were found and compared 
to numerical simulations. 
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