ELECTRON CLOUD EFFECTS IN PRESENT AND FUTURE
HIGH INTENSITY HADRON MACHINES

M. Blaskiewicz*† BNL, Upton NY 11973, USA

1 INTRODUCTION

Electron cloud effects have manifested in several Hadron Machines. Table 1 lists basic machine parameters of past and present hadron machines where electron clouds have influenced operations. This instability has also been seen in the AGS Booster[15], but under extreme conditions. Table 2 lists high intensity proton machines that are under construction. The goal of the present work is to take what is known about electron cloud problems in current machines, mainly the LANL PSR, and attempt to extrapolate to the new machines.

2 FORMATION OF THE ELECTRON CLOUD

Electron clouds created by gas stripping [18, 19, 20, 21], foil scattering [6, 22, 7], or losses are present in all accelerators, to some extent. For problems to occur the initial seed distribution needs to be amplified 1. For short bunches the process has been considered by many authors [18, 19, 20, 21]. For the LANL PSR, and the machines in Table 2, the bunches are long and an electron trapped within the beam performs many transverse oscillations during a single bunch passage [23]. Fig. 1 shows a simulation for typical PSR parameters. If the electron line charge density, λe (units of Coulombs/meter) is small compared with the proton line charge density, λp then a fairly accurate expression for the strike energy can found [16]

\[E_{\text{strike}} = -\frac{\pi m_e c^2}{2} \left(\frac{b}{c} \right)^2 \frac{d\omega_e}{dt} \]

(1)

where \(b \) is the beam pipe radius, \(c \) is the speed of light, and the instantaneous electron oscillation frequency is

\[\omega_e(t) = \sqrt{\frac{e\lambda_p(t)}{2\pi\epsilon_0 m_e(c^2 + 2b^2/\pi)}} \]

(2)

with \(\sigma \) the rms beam radius. The strike energy is positive on the trailing edge of the bunch (\(\omega_e < 0 \)) and equation (1) is valid only when the electron frequency does not have a large fractional change per period, \(|\omega_e| \ll \omega_e^2 \). From the PSR simulation the electron has an energy of 45 eV for the first wall strike, while equation (1) predicts 55 eV. Typical numbers for ISIS give \(E_{\text{strike}} \lesssim 10 \) eV.

When an electron strikes a surface it can be reflected, rediffused or stopped2. During this process another electron may gain enough energy to leave the surface. A useful experimental measure is the secondary emission yield: the ratio of the total number of electrons leaving the surface to the total number incident upon the surface. Figure 2 shows measurements of secondary yield for titanium nitride coated stainless steel with normally incident electrons.

\[\text{Table 1: Basic machine parameters for past and existing hadron machines with electron clouds. For RHIC the ion species is gold, with a kinetic energy of } 11 \text{ GeV/nucleon. All the others are proton machines.} \]

<table>
<thead>
<tr>
<th>Type</th>
<th>(I_{\text{peak}}) (A)</th>
<th>(\sigma_f) (10^{-5})</th>
<th>(\sigma_\perp) (mm)</th>
<th>(K E) (GeV)</th>
<th>(b) (mm)</th>
<th>(Q_\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL</td>
<td>80</td>
<td>20 - 38</td>
<td>38 - 196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISR</td>
<td>55</td>
<td>590 - 32</td>
<td>41 - 0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERN PS</td>
<td>14</td>
<td>19 - 12</td>
<td>11 - 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORNL SNS</td>
<td>1</td>
<td>0.375 - 3</td>
<td>3 - 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNL RHIC</td>
<td>100</td>
<td>125</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J-PARC 3</td>
<td>6.3</td>
<td>4.2</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J-PARC 5</td>
<td>7.6</td>
<td>100</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Basic machine parameters for high intensity proton machines under construction. For the J-PARC machines parameters are labeled as injection - extraction.

\[2 \text{This is a phemonenological, classical picture} \]
Figure 1: Proton beam current (blue) and positions for captured (green) and loss created (red) electrons. The beam pipe radius is 50 mm (violet).

Figure 2: Secondary emission yield for titanium nitride coated stainless steel from similarly manufactured samples. The samples were manufactured by P.He and H.C. Hseuh of the BNL vacuum group. The measurements were performed by B. Henrist of the CERN vacuum group. The surfaces have not been baked or conditioned in any way. The solid lines are data and the markers are a fit of the CSEC model to the blue curve. Of all the fits, the one shown had the largest rms deviation from the data, 0.025.

Figure 2 has been fitted using a phenomenological model and that model was subsequently used in a simulation of electron cloud formation for the SNS. This cylindrically symmetric electron cloud code (CSEC) and its benchmarking against M. Furman’s positron instability code (POSINST [25]) are described in [16]. Figure 3 shows the proton line density and the electron line density within one σ of the beam axis. The primary electrons were estimated assuming 1% of the beam was lost over 1000 turns and that 20 electrons were generated by each lost proton [24]. The electrons create a focusing lens, which travels with the beam. For SNS with 15 nC/m of electrons in the beam the electrons give a tune shift ≈ +0.05.

Figure 3: SNS line charge densities for the beam and electron cloud within r = σ for each of the six secondary yield curves in Fig. 2.

Figure 3 shows the proton line density and the electron line density within one σ of the beam axis. The primary electrons were estimated assuming 1% of the beam was lost over 1000 turns and that 20 electrons were generated by each lost proton [24]. The electrons create a focusing lens, which travels with the beam. For SNS with 15 nC/m of electrons in the beam the electrons give a tune shift ≈ +0.05.

Figure 4: Secondary yield curve for stainless steel. Note the significant reflections at low energy.

Figure 4 shows a reasonable secondary yield curve for clean stainless steel. Taking this secondary yield, 20 electrons per lost proton, 0.1% beam loss over 2000 turns, and parameters for the J-PARC 3 GeV rapid cycling synchrotron [17] yields Figure 5. The peak electron line density from these CSEC simulations corresponds to an instantaneous neutralization of 1.2% at extraction. Increasing the electron generation rate by a factor of 10 changed the results by less than 10%. The electron clouds pictured in Figures 3 and 5 evolve as the beam passes and result in a considerable electron flux to the wall. For Figure 3 the net charge per turn varies between 40 and 700 pC/cm²/turn with electrons in excess of 100 eV depositing between 10 and 50 pC/cm²/turn. For the J-PARC simulations the total charge per turn is 45 and 110 pC/cm²/turn for injection and extraction, respectively. Only about 1% of these electrons have a strike energy greater than 100 eV. These electrons striking the wall will desorb gas molecules and can cause the pressure to rise [20, 26, 27]. For machines with a large duty cycle a dramatic pressure rise can result from a very modest electron flux. Over time,
the adsorbed gas will be exhausted. Also, the electrons striking the wall eventually reduce the secondary yield. The desorbed gas places requirements on the vacuum system. Significant reduction in the secondary yield requires a net electron dose of order 0.1 C/cm² [28, 29]. If the SNS beam is stable under the conditions shown in Figure 3, this conditioning will take about a week of running time. Scaling to J-PARC parameters, a few weeks of running time are needed for conditioning. The question at hand is whether the beam will be stable at sufficiently high intensity for conditioning to occur.

3 EC INSTABILITY

The electron cloud instability in the LANL PSR has been well documented [6, 8, 30, 31, 32, 33, 16]. Figure 6 shows the threshold RF voltage as a function of beam current for different epochs and bunch lengths. When the instability occurs, the observed oscillation frequency agrees with the calculated electron oscillation frequency [30]. The threshold is quite sharp [16], so one expects that a linearized calculation should provide adequate threshold estimates.

Bunched beam stability estimates based on the linearized Vlasov equation are a natural starting point. Early treatments considered positron bunches [34, 35], and techniques developed for the transverse mode coupling instability [36] yielded results which agreed with simulations [37, 38, 34]. For high intensity proton machines the bunches are long and electrons perform many oscillations as the bunch passes. Traditional techniques require matrices with millions of elements and are a significant computational challenge. An alternate technique, which models the RF system using a barrier bucket, yields much smaller matrices [16]. Since the bunch is square the electron oscillation frequency is constant within the bunch

$$\omega_e = \omega_0 Q_e = \frac{e\lambda p}{2\pi \epsilon_0 m_e a^2},$$

where ω_0 is the angular revolution frequency and a is the beam radius. The strength of the electron cloud interaction is determined by the parameter

$$Q_p^2 = \frac{e\lambda e}{2\pi \epsilon_0 \omega_0^2 m_p a^2},$$

(3)

where we assume that the cloud has the same radius as the beam³. Even though we take the radii to be equal, the proton beam radius varies with the lattice functions. To model this spread we assume the electron response function can be modeled as a parallel LRC resonator with quality factor Q_r.

Figure 7 compares the output of the bunched beam eigenvalue code with thresholds obtained using the coasting beam dispersion relation [40, 4, 5, 41, 42],

$$1 = \Delta Q_0 \int \frac{dv \rho(v)}{\Delta Q + \Delta Q_{se} - vQ_e},$$

(4)

where $v = (\omega - \omega_0)/\omega_0$ is the fractional frequency difference, $\rho(v)$ is the normalized density with $\int \rho(v) dv = 1$, ΔQ is the coherent tune when frequency spread is included, and ΔQ_{se} is the space charge tune shift. The cold beam tune shift is

$$\Delta Q_0 = \Delta Q_{se} + i \frac{Q_p^2 Q_r}{2Q_\beta},$$

(5)

where Q_β is the betatron tune. The derivation of equation 4 assumes $\Delta Q \ll Q_\beta$ and $Q_r \ll Q_e$. Taking lattice functions for PSR and SNS, calculating the variation in ω_e for an elliptical (KV) beam, and equating equivalent widths of the resistive transfer function; one finds $Q_r \approx 3$.

³Notice that Q_p is the betatron tune the protons would have in the absence of other focusing forces.
Fig 6. Results for SNS are shown in Figure 8. Similar to those observed in PSR but threshold estimates are low enough. This is well known when there is no spread in the electron bounce frequency, and this frequency is sufficiently far from the nearest, unstable, betatron sideband [40, 5, 15]. However, the simulations in [49] have electron frequency spread. In [16] the inclusion of nonlinear space charge effects led to estimates in better agreement with experimental PSR stability thresholds. In the meantime, the author has done some simulations of the equation

$$\frac{d^2 x_j}{d\theta^2} + Q_j^2 x_j = \frac{1}{N} \sum_{k=1}^{N} \left(Q_j x_k + \alpha \frac{d^2 x_k}{d\theta^2} \right) + \frac{C_{sc}}{N} \sum_{k=1}^{N} \frac{x_j - x_k}{|x_j - x_k|^2 + \epsilon^2},$$

where x_j is a two dimensional vector, Q_j^2, ν, and α are diagonal 2 by 2 matrices, ϵ is a smoothing parameter, and C_{sc} parameterizes the strength of the space charge force. Each Q_j^2 is different and chosen from a parabolic distribution.

Simulations were done by increasing N with a fixed integration time until results converged. For $C_{sc} = 0$, the simulations agree with the coasting beam dispersion relation within a few percent. Simulations with space charge are compared with the analytic theory in Fig. 9. With no spread in Q_j the tune shift is ΔQ_j. Stable simulations of a smooth beam are green crosses and the red are unstable. The red threshold curve is calculated using linear space charge. The blue threshold curve is a hand estimate based on the soft upper limit discussed in [50]. The simulations show a much smaller effect than the hand estimate and the difference corresponds to a factor ~ 4 in RF voltage. The resolution of this problem is a serious, practical matter. Accurate determinations of required momentum aperture and RF voltage could result in significant cost savings for future machines.

4 SIMULATIONS

Simulations of both coasting [47, 48, 49] and bunched [45, 46, 17, 16] beams have been done. The coasting beam simulations involve a fully 3-dimensional solution to the Vlasov equation, but do not yet include the effects of secondary emission. The bunched beam simulations use approximate equations of motion for the protons and electrons but some include secondary emission and synchrotron oscillations. One key question regards the effect of nonlinear forces. The coasting beam simulations [49, Figs 2 and 3] show that electron cloud instabilities do not exist for cold beams if the beam and cloud densities are low enough. This is well known when there is no spread in the electron bounce frequency, and this frequency is sufficiently far from the nearest, unstable, betatron sideband [40, 5, 15]. However, the simulations in [49] have electron frequency spread. In [16] the inclusion of nonlinear space charge effects led to estimates in better agreement with experimental PSR stability thresholds. In the meantime, the author has done some simulations of the equation

$$\frac{d^2 x_j}{d\theta^2} + Q_j^2 x_j = \frac{1}{N} \sum_{k=1}^{N} \left(Q_j x_k + \alpha \frac{d^2 x_k}{d\theta^2} \right) + \frac{C_{sc}}{N} \sum_{k=1}^{N} \frac{x_j - x_k}{|x_j - x_k|^2 + \epsilon^2},$$

where x_j is a two dimensional vector, Q_j^2, ν, and α are diagonal 2 by 2 matrices, ϵ is a smoothing parameter, and C_{sc} parameterizes the strength of the space charge force. Each Q_j^2 is different and chosen from a parabolic distribution.

Simulations were done by increasing N with a fixed integration time until results converged. For $C_{sc} = 0$, the simulations agree with the coasting beam dispersion relation within a few percent. Simulations with space charge are compared with the analytic theory in Fig. 9. With no spread in Q_j the tune shift is ΔQ_j. Stable simulations of a smooth beam are green crosses and the red are unstable. The red threshold curve is calculated using linear space charge. The blue threshold curve is a hand estimate based on the soft upper limit discussed in [50]. The simulations show a much smaller effect than the hand estimate and the difference corresponds to a factor ~ 4 in RF voltage. The resolution of this problem is a serious, practical matter. Accurate determinations of required momentum aperture and RF voltage could result in significant cost savings for future machines.

5 ACKNOWLEDGEMENTS

This work has benefited from conversations with P. Cannell, V.A. Danilov, R. Davidson, W. Fischer, M. Furman,
Figure 9: Various estimates of nonlinear space charge effects with $P(Q) = (3/4W)(1 - (Q - Q_0)^2/W^2)$.

6 REFERENCES

[20] O. Gröbner, PAC97
[26] U. Iriso-Ariz etal, these proceedings
[27] S.Y.Zhang etal, these proceedings