Proceedings of the 2003 Particle Accelerator Conference

INTEGRATING CONTROL SYSTEMSTO BEAM DYNAMICS
APPLICATIONSWITH CORBA

M. Boge, J. Chrin, PSI, Villigen, Switzerland

Abstract the libraries and extensions available to the host operating

. . o . ._system as the introduction of a CORBA middleware layer
High level beam dynamics applications typically require erves taextend the developers chosen programming lan-

access to several distributed components, amon whig "
P 9 age. BD application developers are, henceforth, able to

the hardware control system and an accelerator simulati . S
y ocus on the specifics of the application at hand, such as de-

model are crucial. A CORBA Application Program Inter- - . :
face (API) provides clients with the necessary objects withermlnlng user—frlendly. Graph!call Useri Interfaces (GUIs),
rather than struggle with the intricate internals of numer-

which to develop even the most complex of applications. o
This is exemplified by the global orbit feedback system ays Appl_lcat_lon Program Interfaces (APIs) and low-level
mmunication protocols.

the SLS which is both a consumer to event generated datd
and a party to remote method invocations on a variety of
servers. In particular, use is made of methods provided by THE CORBA ARCHITECTURE
the Portable Object Adapter (POA) to create and activate
persistent objects, the Implementation Repository (IMR) The most fundamental component of CORBA is the Ob-
for the automatic reactivation of servers and the Event Sgect Request Broker (ORB) whose task is to facilitate com-
vice for the propagation of controls and physics data. ~ munication between objects. Given an Interoperable Ob-
ject Reference (IOR), the ORB is able to locate target ob-
INTRODUCTION jects and transmit data to and from remote method invo-
cations. The interface to a CORBA object is specified us-
A considerable number of high-level beam dynamicgg the CORBA Interface Definition Language (IDL). An
(BD) applications have been developed for the operatiom compiler translates the IDL definition into an applica-
and monitoring of the SLS accelerator facilities. Flg Yion programming |anguage, such as C++, Java or Tcl/Tk,
captures typical components required by BD applicationgenerating IDL stubs and skeletons that respectively pro-
Their number and demand on computer resources motide the framework for client-side and server-side proxy
vated, in part, a desire for a distributed computing envicode. Compilation of applications incorporating IDL stubs
ronment. To this end, the Common Object Request Brgyrovides a strongly-typed Static Invocation Interface (SlI).
ker (CORBA), an emerging standard for Distributed Objectonversely, the Dynamic Invocation Interface (DII) and the
Computing (DOC), has been employed. Its use at the S4Synamic Skeleton Interface (DSI) allows objects to be cre-
has allowed to realize the potential benefits of diStribUtedted Withoutprior know|edge of the IDL interface. Re-
computing, and to simultaneously exploit features inheregfuests and responses between objects are delivered in a
to CORBA such as the interoperability between objects aftandard format defined by the Internet Inter-ORB Protocol
different race (language) and creed (platform). Compleg|OP). Requests are marshaled in a platform independent
format, by the client stub (or in the DII), and unmarshaled
on the server-side into a platform specific format by the
IDL skeleton (or in the DSI) and the object adapter, which
serves as a mediator between an object’s implementation,
the servant, and its ORB, thereby decoupling user code
from ORB processing. The Portable Object Adapter (POA)
provides CORBA objects with a common set of methods
for accessing ORB functions, ranging from user authenti-
cation to object activation and object persistence. It's most
basic task, however, is to create object references and to
Figure 1: DOC components serving BD applications dispatch ORB requests aimed at target objects to their re-
spective servants. The characteristics of the POA are de-
tasks, such as the modeling of the SLS accelerators, chined at creation time by a set of POA policies. A server
thus be handled by dedicated computers, and developegin host any number of POAs, each with its own set of
into reusable components that can be accessed throughpelicies to govern the processing of requests. Among the
mote method invocations. Persevering with the notion ahore advanced features of the POA is the servant manager
DOC and developing the entire suite of BD component&hich assumes the role of reactivating server objects (ser-
as CORBA objects, further elevates the level at which apsaants) as they are required. It also provides a mechanism
plications are designed and implemented. Platforms hogt save and restore an object’s state. This, coupled with the
ing high-level software applications are no longer limited taise of the Implementation Repository (IMR), that handles

0-7803-7739-9 ©2003 IEEE 291



Proceedings of the 2003 Particle Accelerator Conference

the automated start and restart of servers, realizes objddius, by virtue of the capabilities of the POA, and the ac-
persistency. Requests for server reactivation can, alterrta/ation techniques of the IMR, BD applications are never
tively, be delegated to a single default servant which prastarved of the servers they require.

vides implementations for many objects, thereby increas-

ing the scalability for CORBA servers. Fig. 2 shows theThe Event Service

A reactive, event-based, form of programming is also
supported by the CORBA Event Service which provides
services for the creation and management of CORBA
event channels. These may be used by CORBA sup-
plier/consumer clients to propagate events asynchronously
on a push or pull basis. Event channels are created and reg-
istered with the CORBA Naming Service allowing clients
to obtain object references in the usual manner. Commu-
Figure 2: The CORBA client-server architecture  pjcation is anonymous in that the supplier does not require
. knowledge of the receiving consumers. The CORBA Event
components of the CORBA architectural model. The OR ervice has been usefully employed in the monitoring of

CoreIs |mplgm¢nted as a runtime library linked into CIIenthardware devices and in the distribution of recalibrated data
server applications. to client consumers.

Client and Server Perspectives THE SLS CORBA SERVERS

Despite the plethora of new terms and concepts intro- _ ) _
duced, CORBA, nevertheless, remains true to the DOC S€rver objects, typically of persistent type, have been
objective of providing developers with familiar object-developed using the CORBA 2.3 compliant product
oriented techniques with which to program distributed ap¥!CO [1]. The services which these objects provide are
plications. Indeed, from the client perspective, once an IOR"€fly reported here (for a more details see [2] and [3]):
is obtained (typically from a Naming Service which mapg\ccelérator Model: A dedicated host (lodel Servetin
names to object references) a remote method invocation &49. 3) runs the servers (“TRACY Servers’) that perform
sentially takes on the appearance of a local function caff?® modeling of transfer-lines, booster and storage ring.
object->operation(arguments) ; Whilst the communica- Procedures ut_|I|ze. selected routines frgm the TRACY ac-
tion details of client-server programming are essentiallge!érator physics library [4], enabling clients to employ ac-
hidden from the client, a more intimate involvement withC€lerator optimization methodsline. _
the ORB is required when developing servers. In particf?€vice Controls. The CDEV C++ class controls library
lar appropriate POA policies need to be chosen to Conﬁ@_rowdes the API to the EPICS-based accelgrator device
ure object adapters that best fulfill the requirements of tHePntrol system.  The “CDEV Server” running on the

server. host “CORBA Servet supplies functionality for both syn-
chronous and asynchronous interactions with the control
Exploiting the POA system. Monitored devices and recalibrated data are prop-

agated to clients through CORBA event channels. Re-

Transient and persistent objects are two categories of ofently an interface to the EZCA C controls library (‘EZCA
jECtS that relate to the Iifespan pO”CiES of the POA. A tranServer") has been added for increased performance_
sient object is short-lived with a lifetime that is boundeq:)atabaseAccessz A database server provides accessto Or-
by the POA in which it was created. A persistent objectacle instances through the Oracle Template Library (OTL)
on the other hand, is Iong-lived with a lifetime that is UNn-and the Oracle Call Interface (OC|) Methods executing
bounded. It can consequently outlive the very server pr&sQL statements that perform database retrieval and mod-
cess wherein it was created. This has several advantaggigation operations have been provided.
A server may be shutdown whenever it is not needed {0ogging Facility: A CORBA message server has been de-
save resources. Server updates can be implemented trapioped using the the UNIX syslog logging facility. Run-
parently by restarting the server. In developing a DOC eRime messages are sent to the logger with various priority

vironment, the command to start a server may be replac@slels, the threshold for which can be adjusted dynamically
with a remote shell invocation and the next server instanggr any given servant.

run remotely, without the client being aware. Persistent

objects also maintain their identify after a server crash. A COMPLEX CORBA APPLICATION

Whilst the POA supports and implements persistent ob-

jects, it does not handle the administrative aspects of serverOne of the most complex CORBA applications at the
activations. This is managed by the IMR which stores aBLS is the implementation of a slow and the system inte-
activation record for each server process; it is consulted agration of a fast global orbit feedback system. The system
tomatically whenever a (re-)launch of a server is mandatets based on 72 Beam Position Monitors (BPMs) and 72

292



Proceedings of the 2003 Particle Accelerator Conference

correctors in the horizontal and vertical plane distributed he Fast Orbit Feedback (FOFB)
?rrogggr:hsrtségiag;n”ng'vgh.i Ezrsree(gfzizaﬂ re;g:)ar:_scerza-m the SLS storage ring a properly chosen BPM/corrector
XIS nv trix t lf(.' 9 ; ' il ei | qu : layout leads to an “inverted” response matrix where only
spgRser mﬂzrlﬁi ‘1 'r;gt]hm OI agc:) rbitef'gegga Llj(es' been trhe diagonal and their adjacent coefficients have non zero
€ realization ot the global o eedbackhas been caf, qq. Thus, corrector settings are only determined by po-

ried outin two steps. A Slow Orbit Fgedback (.SO.FB) Wlthsition readings from nearby BPMs [8]. This feature allows
relaxed requirements<(3 Hz correction rate) is in oper-

i . A £ 2001 5], Th . ined .tbo run the FOFB decentralized, integrated in the 12 BPM
ation since Augus [5]. The EXPENence gained Wit i4ns of the storage ring where each of the stations han-
the various subsystems served as a basis for the implem

. ) . %iEs 6 BPMs and correctors. The BPM data are transmitted
ta.tlon ofa Fa§t O.rb|t Feedback (FOFB) (4. KHZ prblt SaMover fiber optic links between adjacent stations. In order to
pling rate) which is presently under commissioning [6].

provide well defined starting conditions for the FOFB the
. SOFB corrects the orbitta 5 yum rms. The FOFB gets ini-
The Sow Orbit Feedback (SOFB) tialized and started through the SOFB which downloads the
Since the beginning of SLS operation global orbit cor-Golden Orbit”, 6x6 sub-matrices of the “inverted” 3272
rections have been successfully applied manually by ttiesponse matrix, 16 sub-matrices of the “inverted” 22
operators with the help of the Tcl/Tk CORBA GUI “oco off-energy response matrix and the FOFB loop PID param-
Client”. Due to the inherent modularity of the CORBA eters to the BPM stations (see Fig. 3). The SOFB continues
environment, thoroughly tested underlying CORBA comto run in a “watchdog” like passive mode without touching
ponents like the “TRACY Server” and the “CDEV Server”any corrector other than the RF frequency. But it keeps
could be combined to implement the SOFB. In this casgonitoring BPM and corrector values. Whenever a BPM
the operator is “replaced” by a C++ CORBA client (“Feedds switched off, declared faulty or a corrector is close to
back Client”) which initiates an orbit correction at a givensaturation the FOFB is stopped and restarted with adapted
rate (see Fig. 3). For the SOFB the digital BPM system [73ettings. The off-energy content of the horizontal orbit is
taken into account by the FOFB but corrected by the SOFB.

=) e CONCLUSION

CORBA extends the capabilities of the programming
e Server CORBA Server languages used by BD application developers, thereby ele-
”””””””” vating the level at which complex applications exemplified

 m— Event @ 2Hz
‘ acy 2 Fecelffbick ‘; by the orbit feedback system at the SLS are designed and
rver ol ien ( ) . e e .
Pl o e | 9 | oel server implemented. The flexibility of the POA, coupled with the
77777777777777777 ¢ — server activation records within the IMR, can be exploited
to provide a robust and modular client-server framework.
BPMs —— — Correctors BPM Hardware
FOFB Fast Orbit Feedback
REFERENCES

Figure 3: Schematic View of the SOFB: the ”Feedbaclﬁ] A. Puder, K. Fomer, “MICO, An Open Source CORBA Im-

Cllent." on the “Model Serve’i‘ level replaces the opera- plementation”, 3rd Edition, Pub: dpunkt.verlag, Heidelberg,
tor driven GUI “oco Client” on the Consolé level. It December 1999.

gets BPM data from the "BPM Server”, asks the “TRACY M. Boge et al., “Commissioning of the SLS using CORBA

. 2
Server” for the model predicted corrector pattern and a;g—] Based Beam Dynamics Applications”, PAC'01, Chicago
plies the correction through the “CDEV Server”. June 2001 ’ ' ’

. . S . . . LS] M. Bdge, J. Chrin, “On the Use of CORBA in High Level
is operated in an injection triggered mode which provide Software Applications at the SLS”, ICALEPCS 2001, San
“stroboscopic” position readings averaged over 2 ms at a j,56 November 2001 ' '
rate of 3 Hz with a resolutior: 0.3 um. A “BPM Server” ’

. A 4] J. Bengtsson, “TRACY-2 User’'s Manual”, SLS Internal Doc-
monitors, collects and sends the BPM data to the Fee&- ument, February 1997; M.dje, “Update on TRACY-2 Doc-

back Client” with 2 Hz. A low pass filter is applied to umentation”, SLS-TME-TA-1999-0002, June 1999.
several successive BPM data sets. The data are then iﬁ]tm Boge et al., “Orbit Control at the SLS Storage Ring’
to the “TRACY Server” which predicts a corrector patter EPAC02, Paris’, June 2002, '
to restore the “Golden Orbit” which is defined by the orb
centered in the quadrupoles. Additionally, local bumps back at the SLS”. Contribution to this Conference.

the location of the insertion devices are taken into accou L .

in order to steer the photon beam according to the deman& \é itfa Tgtt;;\glc')’l %?‘?;?'is'gn:‘neggotfe SLS Digital BPM
of the experiments. Finally, the proposed correction is ap- y o o 46 = ) T

plied by toggling between the horizontal and the Vertical[ls] M.. B’(’)ge et,al., Fast Closed Orbit Control in the SLS Storage
plane resulting in a SOFB correction ratec00.4 Hz. Ring", PAC'99, New York, March 1998.

I;g T. Schilcher et al., “Commissioning of the Fast Orbit Feed-

293



