
INTEGRATING CONTROL SYSTEMS TO BEAM DYNAMICS
APPLICATIONS WITH CORBA

M. Böge, J. Chrin, PSI, Villigen, Switzerland
Abstract

High level beam dynamics applications typically require
access to several distributed components, among which
the hardware control system and an accelerator simulation
model are crucial. A CORBA Application Program Inter-
face (API) provides clients with the necessary objects with
which to develop even the most complex of applications.
This is exemplified by the global orbit feedback system at
the SLS which is both a consumer to event generated data
and a party to remote method invocations on a variety of
servers. In particular, use is made of methods provided by
the Portable Object Adapter (POA) to create and activate
persistent objects, the Implementation Repository (IMR)
for the automatic reactivation of servers and the Event Ser-
vice for the propagation of controls and physics data.

INTRODUCTION

A considerable number of high-level beam dynamics
(BD) applications have been developed for the operation
and monitoring of the SLS accelerator facilities. Fig. 1
captures typical components required by BD applications.
Their number and demand on computer resources moti-
vated, in part, a desire for a distributed computing envi-
ronment. To this end, the Common Object Request Bro-
ker (CORBA), an emerging standard for Distributed Object
Computing (DOC), has been employed. Its use at the SLS
has allowed to realize the potential benefits of distributed
computing, and to simultaneously exploit features inherent
to CORBA such as the interoperability between objects of
different race (language) and creed (platform). Complex

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

VME

channel
access

Oracle

Device
Control

Event
Logger

Database
Server

Model
Accelerator

Net8 Net8

CORBA SOFTWARE BUS

Figure 1: DOC components serving BD applications

tasks, such as the modeling of the SLS accelerators, can
thus be handled by dedicated computers, and developed
into reusable components that can be accessed through re-
mote method invocations. Persevering with the notion of
DOC and developing the entire suite of BD components
as CORBA objects, further elevates the level at which ap-
plications are designed and implemented. Platforms host-
ing high-level software applications are no longer limited to

the libraries and extensions available to the host operating
system as the introduction of a CORBA middleware layer
serves toextend the developers chosen programming lan-
guage. BD application developers are, henceforth, able to
focus on the specifics of the application at hand, such as de-
termining user-friendly Graphical User Interfaces (GUIs),
rather than struggle with the intricate internals of numer-
ous Application Program Interfaces (APIs) and low-level
communication protocols.

THE CORBA ARCHITECTURE

The most fundamental component of CORBA is the Ob-
ject Request Broker (ORB) whose task is to facilitate com-
munication between objects. Given an Interoperable Ob-
ject Reference (IOR), the ORB is able to locate target ob-
jects and transmit data to and from remote method invo-
cations. The interface to a CORBA object is specified us-
ing the CORBA Interface Definition Language (IDL). An
IDL compiler translates the IDL definition into an applica-
tion programming language, such as C++, Java or Tcl/Tk,
generating IDL stubs and skeletons that respectively pro-
vide the framework for client-side and server-side proxy
code. Compilation of applications incorporating IDL stubs
provides a strongly-typed Static Invocation Interface (SII).
Conversely, the Dynamic Invocation Interface (DII) and the
Dynamic Skeleton Interface (DSI) allows objects to be cre-
ated withoutprior knowledge of the IDL interface. Re-
quests and responses between objects are delivered in a
standard format defined by the Internet Inter-ORB Protocol
(IIOP). Requests are marshaled in a platform independent
format, by the client stub (or in the DII), and unmarshaled
on the server-side into a platform specific format by the
IDL skeleton (or in the DSI) and the object adapter, which
serves as a mediator between an object’s implementation,
the servant, and its ORB, thereby decoupling user code
from ORB processing. The Portable Object Adapter (POA)
provides CORBA objects with a common set of methods
for accessing ORB functions, ranging from user authenti-
cation to object activation and object persistence. It’s most
basic task, however, is to create object references and to
dispatch ORB requests aimed at target objects to their re-
spective servants. The characteristics of the POA are de-
fined at creation time by a set of POA policies. A server
can host any number of POAs, each with its own set of
policies to govern the processing of requests. Among the
more advanced features of the POA is the servant manager
which assumes the role of reactivating server objects (ser-
vants) as they are required. It also provides a mechanism
to save and restore an object’s state. This, coupled with the
use of the Implementation Repository (IMR), that handles

0-7803-7739-9 ©2003 IEEE 291

Proceedings of the 2003 Particle Accelerator Conference



the automated start and restart of servers, realizes object
persistency. Requests for server reactivation can, alterna-
tively, be delegated to a single default servant which pro-
vides implementations for many objects, thereby increas-
ing the scalability for CORBA servers. Fig. 2 shows the

Stubs

Skeleton

ORB

ORB Core ORB CoreIIOP

DII IFR POAIMR

DSI

ORB

Client Servant

Figure 2: The CORBA client-server architecture

components of the CORBA architectural model. The ORB
core is implemented as a runtime library linked into client-
server applications.

Client and Server Perspectives

Despite the plethora of new terms and concepts intro-
duced, CORBA, nevertheless, remains true to the DOC
objective of providing developers with familiar object-
oriented techniques with which to program distributed ap-
plications. Indeed, from the client perspective, once an IOR
is obtained (typically from a Naming Service which maps
names to object references) a remote method invocation es-
sentially takes on the appearance of a local function call:
object->operation(arguments); whilst the communica-
tion details of client-server programming are essentially
hidden from the client, a more intimate involvement with
the ORB is required when developing servers. In particu-
lar appropriate POA policies need to be chosen to config-
ure object adapters that best fulfill the requirements of the
server.

Exploiting the POA

Transient and persistent objects are two categories of ob-
jects that relate to the lifespan policies of the POA. A tran-
sient object is short-lived with a lifetime that is bounded
by the POA in which it was created. A persistent object,
on the other hand, is long-lived with a lifetime that is un-
bounded. It can consequently outlive the very server pro-
cess wherein it was created. This has several advantages.
A server may be shutdown whenever it is not needed to
save resources. Server updates can be implemented trans-
parently by restarting the server. In developing a DOC en-
vironment, the command to start a server may be replaced
with a remote shell invocation and the next server instance
run remotely, without the client being aware. Persistent
objects also maintain their identify after a server crash.
Whilst the POA supports and implements persistent ob-
jects, it does not handle the administrative aspects of server
activations. This is managed by the IMR which stores an
activation record for each server process; it is consulted au-
tomatically whenever a (re-)launch of a server is mandated.

Thus, by virtue of the capabilities of the POA, and the ac-
tivation techniques of the IMR, BD applications are never
starved of the servers they require.

The Event Service

A reactive, event-based, form of programming is also
supported by the CORBA Event Service which provides
services for the creation and management of CORBA
event channels. These may be used by CORBA sup-
plier/consumer clients to propagate events asynchronously
on a push or pull basis. Event channels are created and reg-
istered with the CORBA Naming Service allowing clients
to obtain object references in the usual manner. Commu-
nication is anonymous in that the supplier does not require
knowledge of the receiving consumers. The CORBA Event
Service has been usefully employed in the monitoring of
hardware devices and in the distribution of recalibrated data
to client consumers.

THE SLS CORBA SERVERS

Server objects, typically of persistent type, have been
developed using the CORBA 2.3 compliant product
MICO [1]. The services which these objects provide are
briefly reported here (for a more details see [2] and [3]):
Accelerator Model: A dedicated host (“Model Server” in
Fig. 3) runs the servers (“TRACY Servers”) that perform
the modeling of transfer-lines, booster and storage ring.
Procedures utilize selected routines from the TRACY ac-
celerator physics library [4], enabling clients to employ ac-
celerator optimization methodsonline.
Device Controls: The CDEV C++ class controls library
provides the API to the EPICS-based accelerator device
control system. The “CDEV Server” running on the
host “CORBA Server” supplies functionality for both syn-
chronous and asynchronous interactions with the control
system. Monitored devices and recalibrated data are prop-
agated to clients through CORBA event channels. Re-
cently an interface to the EZCA C controls library (“EZCA
Server”) has been added for increased performance.
Database Access: A database server provides access to Or-
acle instances through the Oracle Template Library (OTL)
and the Oracle Call Interface (OCI). Methods executing
SQL statements that perform database retrieval and mod-
ification operations have been provided.
Logging Facility: A CORBA message server has been de-
veloped using the the UNIX syslog logging facility. Run-
time messages are sent to the logger with various priority
levels, the threshold for which can be adjusted dynamically
for any given servant.

A COMPLEX CORBA APPLICATION

One of the most complex CORBA applications at the
SLS is the implementation of a slow and the system inte-
gration of a fast global orbit feedback system. The system
is based on 72 Beam Position Monitors (BPMs) and 72

292

Proceedings of the 2003 Particle Accelerator Conference



correctors in the horizontal and vertical plane distributed
around the storage ring. The corrector/BPM response ma-
trix is “inverted” using SVD in case of a non quadratic re-
sponse matrix taking into accountall eigenvalues.

The realization of the global orbit feedback has been car-
ried out in two steps. A Slow Orbit Feedback (SOFB) with
relaxed requirements (< 3 Hz correction rate) is in oper-
ation since August 2001 [5]. The experience gained with
the various subsystems served as a basis for the implemen-
tation of a Fast Orbit Feedback (FOFB) (4 KHz orbit sam-
pling rate) which is presently under commissioning [6].

The Slow Orbit Feedback (SOFB)

Since the beginning of SLS operation global orbit cor-
rections have been successfully applied manually by the
operators with the help of the Tcl/Tk CORBA GUI “oco
Client”. Due to the inherent modularity of the CORBA
environment, thoroughly tested underlying CORBA com-
ponents like the “TRACY Server” and the “CDEV Server”
could be combined to implement the SOFB. In this case
the operator is “replaced” by a C++ CORBA client (“Feed-
back Client”) which initiates an orbit correction at a given
rate (see Fig. 3). For the SOFB the digital BPM system [7]

oco

BPM

Server

TRACY
Server

Client

Event

Event @ 0.5Hz

@ 2Hz

Poll

Event

Event

CORBA Server

CorrectorsBPMs

Client

Feedback

FB Log
Client

Model Server

Console

Server

CDEV

BPM
Fast Orbit FeedbackFOFB

LowLevel Hardware

EZCA Server

Figure 3: Schematic View of the SOFB: the “Feedback
Client” on the “Model Server” level replaces the opera-
tor driven GUI “oco Client” on the “Console” level. It
gets BPM data from the “BPM Server”, asks the “TRACY
Server” for the model predicted corrector pattern and ap-
plies the correction through the “CDEV Server”.

is operated in an injection triggered mode which provides
“stroboscopic” position readings averaged over 2 ms at a
rate of 3 Hz with a resolution≈ 0.3µm. A “BPM Server”
monitors, collects and sends the BPM data to the “Feed-
back Client” with 2 Hz. A low pass filter is applied to
several successive BPM data sets. The data are then sent
to the “TRACY Server” which predicts a corrector pattern
to restore the “Golden Orbit” which is defined by the orbit
centered in the quadrupoles. Additionally, local bumps at
the location of the insertion devices are taken into account
in order to steer the photon beam according to the demands
of the experiments. Finally, the proposed correction is ap-
plied by toggling between the horizontal and the vertical
plane resulting in a SOFB correction rate of≈ 0.4 Hz.

The Fast Orbit Feedback (FOFB)

In the SLS storage ring a properly chosen BPM/corrector
layout leads to an “inverted” response matrix where only
the diagonal and their adjacent coefficients have non zero
values. Thus, corrector settings are only determined by po-
sition readings from nearby BPMs [8]. This feature allows
to run the FOFB decentralized, integrated in the 12 BPM
stations of the storage ring where each of the stations han-
dles 6 BPMs and correctors. The BPM data are transmitted
over fiber optic links between adjacent stations. In order to
provide well defined starting conditions for the FOFB the
SOFB corrects the orbit to< 5µm rms. The FOFB gets ini-
tialized and started through the SOFB which downloads the
“Golden Orbit”, 6×6 sub-matrices of the “inverted” 72×72
response matrix, 1×6 sub-matrices of the “inverted” 72×1
off-energy response matrix and the FOFB loop PID param-
eters to the BPM stations (see Fig. 3). The SOFB continues
to run in a “watchdog” like passive mode without touching
any corrector other than the RF frequency. But it keeps
monitoring BPM and corrector values. Whenever a BPM
is switched off, declared faulty or a corrector is close to
saturation the FOFB is stopped and restarted with adapted
settings. The off-energy content of the horizontal orbit is
taken into account by the FOFB but corrected by the SOFB.

CONCLUSION

CORBA extends the capabilities of the programming
languages used by BD application developers, thereby ele-
vating the level at which complex applications exemplified
by the orbit feedback system at the SLS are designed and
implemented. The flexibility of the POA, coupled with the
server activation records within the IMR, can be exploited
to provide a robust and modular client-server framework.

REFERENCES

[1] A. Puder, K. R̈omer, “MICO, An Open Source CORBA Im-
plementation”, 3rd Edition, Pub: dpunkt.verlag, Heidelberg,
December 1999.

[2] M. Böge et al., “Commissioning of the SLS using CORBA
Based Beam Dynamics Applications”, PAC’01, Chicago,
June 2001.

[3] M. Böge, J. Chrin, “On the Use of CORBA in High Level
Software Applications at the SLS”, ICALEPCS 2001, San
Jose, November 2001.

[4] J. Bengtsson, “TRACY-2 User’s Manual”, SLS Internal Doc-
ument, February 1997; M. B̈oge, “Update on TRACY-2 Doc-
umentation”, SLS-TME-TA-1999-0002, June 1999.

[5] M. Böge et al., “Orbit Control at the SLS Storage Ring”,
EPAC’02, Paris, June 2002.

[6] T. Schilcher et al., “Commissioning of the Fast Orbit Feed-
back at the SLS”, Contribution to this Conference.

[7] V. Schlott et al., “Commissioning of the SLS Digital BPM
System”, PAC’01, Chicago, June 2001.

[8] M. Böge et al., “Fast Closed Orbit Control in the SLS Storage
Ring”, PAC’99, New York, March 1999.

293

Proceedings of the 2003 Particle Accelerator Conference


