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Abstract

Several codes have been developed specifically to sim-
ulate beam dynamics in high intensity rings. These
codes contain detailed algorithms for modeling the rele-
vant physics in the beam, from single particle transport
to important collective effects, including space charge and
impedances. Among the various codes, a number of differ-
ent methods have been adopted for the treatment of space
charge. The codes have been applied to a variety of prob-
lems in existing machines, as well as for the study, design,
and optimization of future machines. A review of exist-
ing ring simulation codes is presented, with specific em-
phasis on the space charge implementation. A more in-
depth description of the features and application histories
of a few specific codes is given, as well as a summary of
code benchmarks with experimental data.

INTRODUCTION

The low loss requirements for future high intensity rings
will require detailed knowledge of beam dynamics in the
machine. Large scale computational models provide an in-
valuable tool for simulating the multitude of processes that
can contribute to beam loss. In particular, in the regime
of high beam intensities and low beam energies, collective
effects such as space charge and impedances have a sig-
nificant effect on the beam behavior. In order to predict
beam loss at the levels required by future machines, i.e.,
tiny fractions of the beam intensity, the simulations must
realistically account for the entire transport of the beam in
the ring, from mapping through external magnetic fields to
modeling of collective effects. Due to the complexity of
this task, a computational framework is natural. Simula-
tions of this type are productive in the analysis of instabil-
ity thresholds, halo development, and emittance dilution in
existing machines, and are equivalently useful in the design
and optimization of future machines.

In the past few years, a wealth of simulation tools geared
specifically for application to high intensity rings has been
developed. The majority of these tools began as small, in-
house codes written with a specific problem in mind, but
have subsequently been upgraded into more general pack-
ages applicable across a broad range of problems. Each
package, or code, typically contains models for a substan-
tial subset of the relevant physical process: injection, strip
foil effects, RF capture and acceleration, transport through
linear and nonlinear magnetic fields, field errors, fringe
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fields, space charge, impedances, boundaries and image
charges, electron-proton interactions, apertures and colli-
mation, modeling of non-standard hardware, diagnostic ca-
pabilities, etc.

A realistic simulation of a high intensity beam would
ideally algorithms for all the relevant physics together with
a large number of macro-particles to reduce numerical
noise. However, because of the computational expense
of many of the algorithms, especially the collective algo-
rithms, one usually must limit either the number of mod-
els included, or the number of macro-particles. Typically,
the most dominant effects on the beam are known apri-
ori, and the algorithms representing these effects are prior-
itized over algorithms which contribute only marginally to
the beam behavior. Recently, this problem has been allevi-
ated somewhat by the implementation of parallel comput-
ing into many of the codes. The parallel framework allows
for fast processing of large jobs, which may include mul-
tiple collective processes, as well as large numbers of par-
ticles (≥ 106). Though there is still progress to be made,
many simulations can now realistically portray beam be-
havior in a high intensity ring.

With the capability to simulate real machines comes the
opportunity to benchmark the codes against experimental
data. Successful benchmarks with experiment are critical
to establishing credibility of the models in the codes. Addi-
tionally, since codes are often used for the design of future
machines, a successful benchmark with a current machine
lends confidence to the predictions for future machines.
Experimental studies at several existing machines have re-
cently been undertaken, and effort is underway to involve a
larger number of codes in more ambitious benchmark tests.

This paper presents a review of the current state-of-the-
art in in simulation tools for high intensity ring beams. As-
pects of the various treatments of space charge are high-
lighted. A brief summary of code capabilities for a repre-
sentative sampling of codes is presented, and a discussion
of specific problems to which the code has been applied
is given. Summary tables of each code availability, space
charge implementation, and code benchmark versus exper-
iment are also shown.

SUMMARY OF AVAILABLE CODES

Information on many of the available ring space charge
codes was presented at the ICFA Beam Dynamics Mini-
Workshop on Space Charge Simulation [1]. Table 1 lists
the codes and gives the details of code accessibility and
documentation, programming language, appropriate plat-
form for installation, parallelization status, and any addi-
tional external libraries required.
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Table 1: Summary of codes and portability.

CODE Access Information Language Platform Parallel Ca-
pability

External
Libraries

ESME www-ap.fnal.gov/ESME/ F77 Unix/Linux Yes None
LONG1D www.triumf.ca/people/koscielniak/long1d.htm F77 DEC/Linux No GPlot, CERN libs
Track 1D, 2D, 3D c.prior@rl.ak.uk F77 Any No None
SIMPSONS shinji.machida@kek.jp F77 Any In progress None
ACCSIM www.triumf.ca/compserv/accsim.html F77 Unix/Linux No CERN libs
ORBIT-ORNL www.sns.gov/APGroup/Codes/orbit.htm C++ Unix/Linux Yes MPI, SuperCode,

MXYZTPLK,
FFTW

ORBIT-BNL luccio@bnl.gov C++ Unix/Linux Yes MPI
ML/IMPACT rdryne@lbl.gov F90 Unix/Linux Yes MPI
GenTrackE andreas.adelmann@psi.ch C++ Unix/Linux Yes MPI
Best hongqin@princeton.edu F90 Unix/Linux Yes MPI, OpenMP
Synergia spentz@fnal.gov F90/C+ Unix/Linux Yes MPI

An important component of any code simulating high
intensity ring beams is the space charge algorithm. His-
torically, space charge effects were considered important
mainly in linear accelerators, where the peak density of par-
ticles is much greater than in rings. Several space charge
codes exist for linacs, many of which have been extensively
applied to space charge studies in current and future ma-
chines [2]. Recently, space charge has been recognized as
an important phenomenon for rings as well. Even for very
high intensity ring beams, the space charge force is small
compared to that in linac beams. However, due to the peri-
odic nature of rings and the long duration time spent there,
the ring beam is sensitive to resonant excitations induced
by space charge, and a relatively small space charge force
can significantly alter the beam behavior. Implementation
of space charge routines for rings began as early as 1980
[3]. The effort has increased dramatically in recent years,
stimulated by projects such as the SNS machine [4] and the
prospect of future high intensity proton drivers.

A variety of approaches to solving Poisson’s equation
for the ring beam have been developed, each with its own
merits and drawbacks. One problem that all space charge
algorithms must contend with is the computation expense
of the problem, which normally occupies the largest sin-
gle portion of CPU run time. This expense is rooted
in the large number of macro-particles, the finely-spaced
meshes, and the small integration lengths required by space
charge solvers to provide accurate results with low numer-
ical noise. To overcome this hurdle, many codes contain
fast solvers which rely on a few approximations, or par-
allel processing capabilities, or both. Some of the more
common approaches to solving Poisson’s equation for the
beam include various types of spectral methods (FFT con-
volutions in mode-space), finite element methods (FEM),
or fast multipole method (FMM) techniques.

Table 2 gives a summary of routines and parameters rel-
evant to the space charge implementation for the codes
shown in Table 1 . For each code, the table lists the in-

dependent variable used for tracking, the dimension of the
space charge model, the number of macro-particles that are
typically tracked, the type of space charge algorithm, and
whether any image or boundary charges can be included.
Recall that the parallel capability of the codes is listed in
Table 1.

DETAILS OF SOME SPECIFIC CODES

In this section, a brief discussion of some of the codes
listed in Tables 1 and 2 is given. In addition to summariz-
ing capabilities or highlighting key features, a few of the
problems to which the codes have been applied are also
presented. Unfortunately, due to space considerations, it
is not possible to present separate reviews all of the codes
listed in Tables 1 and 2. The discussion below is intended
as representative sampling of codes and some of their ap-
plications, not a comprehensive survey.

ESME

The ESME code is designed for tracking in longitudinal
phase space of a beam [5], and for other aspects of a pro-
ton synchrotron that are governed by RF. The code follows
the beam distribution in energy and azimuth on a turn-by-
turn basis, where the independent variable for tracking is
the revolution time of the synchrotron. The code began
development in the early 1980’s, and has been extended
considerably since this time, with implementation of the
space charge algorithm in 1986. ESME now contains com-
prehensive capabilities for modeling the physics relevant to
the longitudinal dynamics of the beam, including, but not
limited to,

• Energy ramps: linear, parabolic, cubic, biased sinu-
soid, user defined

• Arbitrary phase and voltage curves, multiple RF
sources, exact sinusoidal, non-sinusoidal

• Lattice nonlinearity via ∆p/p expansion
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Table 2: Summary of routines and parameters relevant to space charge implementation.

CODE Independent
Variable

Dimension of
SC Model

Number of
Particles

Space Charge Model Boundaries & Images

ESME revolution
time

1D long. 107 smoothed dλ
dz Circular conducting

wall
LONG1D revolution

time
1D long. 106 smoothed dλ

dz Conducting wall

Track 1D, 2D, 3D revolution
time; s; s

1D; 2D; 3D 106 smoothed dλ
dz ; FEM;

FEM
Variable g-factor;
Automatic treatment;
Automatic treatment

SIMPSONS t 2D, 3D ≥ 104 FFT in cylin. coords. Circular conducting
wall

ACCSIM s 2.5D ≥ 105 Hybrid FMM Conducting wall
ORBIT-ORNL s 1D, 2.5D, 3D ≥ 106 FFT, force or potential Conducting wall
ORBIT-BNL s 1D, 2D, 3D 106 SU + LOR Conducting wall, au-

tomatic images
ML/IMPACT s 3D ≥ 106 Spectral None
GenTrackE t/s 3D ≥ 109 FEM, Multi-grid Periodic, Dirichlet or

Neumann, mixed
Best t 3D ≥ 106 Spectral, FD Circular conducting

wall
Synergia s 3D ≥ 106 Spectral Open, periodic, rect-

angular, circular

• Momentum aperture checking
• Machine to machine transfers
• γt jump and RF phase reversal
• Imaginary γt lattices
• Voltage and phase feedback
• Space charge
• Wall impedances
• Graphics and diagnostics.

Having been in use for quite some time now, there is an
exhaustive list of problems to which ESME has been ap-
plied. For example, it has been used at the Fermilab Main
Ring and Injector to study bunch coalescing, phase lock,
and slip stacking; at the Fermilab Booster for studies of
transition crossing, γt jump, and beam instabilities; at the
SNS in benchmark studies with the ORBIT code and for
bunch shape manipulation in the SNS accumulator ring;
and for a multitude of studies at other machines, including
the CERN PS and SPS, the Pimms Medical Synchrotron,
Petra (for protons), and a future proton driver machine.

TRACK 1D, 2D, and 3D

The Track codes consist of three separate codes for
tracking in the longitudinal dimension (Track1D), in the
transverse dimensions (Track2D), and in all three dimen-
sions (Track3D) [6]. Like the ESME code, Track2D was
developed in the early 1980’s, and has a long history of
additions, revisions, and applications. It was possibly the
first particle-pushing code to perform multi-turn injection
with full nonlinear space charge, this work having been per-

formed for fusion studies in 1980 [3]. An essential feature
of the space charge implementation is that it is based on
a finite element approach, which allows for easy handling
of complicated geometries. The algorithms also provides
automatic treatment of image charges for open, periodic,
elliptical, polygonal, and lossy boundaries.

As main in-house codes at the Rutherford-Appleton Lab-
oratory, the Track codes have been extensively applied
in upgrade and development studies of the ISIS machine.
These studies have resulted in upgrade of the injection sys-
tem and the design and installation of a new dual-harmonic
RF system, due to come on line in the next year. Addi-
tionally, the Track codes have been used for studies of in-
jection, funnel optimization, and chopper optimization in
the ESS design, for studies at CERN machines (PS, PS
Booster, and SPS), for simulations of a future proton driver
at Fermilab, and for studies of a future neutrino factory.

ACCSIM

The ACCSIM code is unique from many of its prede-
cessors in that it was specifically developed as a “ready-to-
run” package for general use in the study, design, and op-
timization of accelerator rings and transport lines [7]. The
code is comparably well-documented and a detailed User’s
Manual is available [8]. Not only is ACCSIM attractive
from the standpoint of portability and user-friendliness, it
also has a comprehensive suite of physics models. Some of
these models are:

• Injection: internal distribution generators, painting,
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foil effects
• First order tracking and thin element capabilities
• RF and acceleration, barrier RF
• Apertures for any element, collimators and targets
• Pick-up and damper systems
• Space charge: longitudinal, 2.5D transverse
• Image charges
• Many diagnostics, built in graphics.

The space charge routine is a hybrid FMM routine which
yields computational times scaling with Ng , the number of
grid points. This is a significant improvement over the scal-
ing of the pure FMM routine, which depends on the num-
ber of particles, Np [7]. The reference to 2.5D in the space
charge routine refers to the fact that the transverse and lon-
gitudinal directions are quasi-independent, with coupling
induced from length terms and longitudinal density factors.
A new improvement to ACCSIM is the inclusion of a MAD
parser into the program. This is currently available in the
newest beta-release version, ACCSIM 4.

ACCSIM has been used at many laboratories for a vari-
ety of ring machine studies. Benchmarks with experimen-
tal data have been performed for the CERN PS Booster and
the KEK 12 GeV PS, both of which yielded successful re-
sults. Additionally, ACCSIM has been used for studies of
injection at the Tsukub Hitachi medical synchrotron, for
studies of injection and space charge in the future SNS 1
GeV accumulator ring, and for studies of injection and col-
limation in the J-PARC 3 GeV ring, to name just a few.

ORBIT

Historically, ORBIT began as a C++ rewrite of the F77-
based ACCSIM code [9]. The motivation for the rewrite
was two-fold: to provide a modular structure for program-
ming, and to incorporate a driver shell for “on-the-fly”
scripting. SuperCode was the driver shell chosen at the
time and is still in use in the Oak Ridge version of ORBIT,
ORBIT-ORNL. However, an effort is underway to replace
SuperCode with a more standard, well-documented Python
interface; the completion of this work is imminent.

Owing mainly to the modular structure of the code,
ORBIT-ORNL has been developed as a collaborative ef-
fort between many authors. The modularity allows for the
easy addition of new source code (a module), which acts
independently from other modules. This structure helps a
developer isolate and identify errors, and allows a user to
pick and choose among existing modules to formulate a
combination appropriate to the problem at hand. Among
the available models in the ORBIT-ORNL code are:

• Injection: internal distribution generators, painting,
foil effects

• Single particle transport: First or second order track-
ing, symplectic TEAPOT-type maps, or Mxyzptlk li-
brary. library.

• RF and acceleration
• Magnet errors and fringe fields

• closed orbit calculation and correction
• Apertures and collimators
• Space charge: 1D longitudinal, 2.5D force or poten-

tial, or 3D potential
• Image charges
• Transverse and longitudinal impedances
• Feedback and stabilization
• Diagnostics

ORBIT-ORNL has been the main code in use for simula-
tions of the future SNS accumulator ring beam. It has been
used for injection optimization, for collimation system de-
sign and optimization, for studies of halo formation from
space charge, impedances, and resonance crossing, for de-
velopment of a feedback and stabilization system, and for
studies of loss distributions around the ring. Outside of the
SNS project, ORBIT-ORNL was the main tool applied in
a comprehensive study of space charge effects in the PSR
ring [10], and is now in use for space charge studies of the
Fermilab Booster ring.

The ORBIT-ORNL version presented above is housed
at Oak Ridge National Laboratory and is different than
the version housed at Brookhaven National Laboratory,
ORBIT-BNL [11]. Both versions originated from the first
ORBIT rewrite of ACCSIM, but eventually two different
codes emerged under separate developers. ORBIT-BNL
incorporates many of the same capabilities as the ORBIT-
ORNL, including full 3D space charge, parallel capabil-
ities, and impedances, but it no longer makes use of the
driver shell format. Additionally, the algorithms for many
of the routines differ, as demonstrated by Table 2. Though
ORBIT-BNL uses position (s) as the independent variable
for tracking, the space charge algorithm is formulated to
remove the resulting approximation in the time domain.
ORBIT-BNL also been used for machine studies, includ-
ing simulations of the SNS accumulator ring, of the AGS,
the AGS Booster, and the RHIC machine at Brookhaven,
and also for simulations of SIS at the GSI.

New Directions: IMPACT-MaryLie, GenTrackE,
UAL

A few codes that are either new to space charge sim-
ulation in rings or will be entering the scene soon are
IMPACT-MaryLie, GenTrackE, and UAL.

The linear accelerator code IMPACT has recently been
merged with the MaryLie package to provide particle track-
ing in rings. The new code, IMPACT-MaryLie [12], con-
tains relevant modules from the original IMPACT code,
as well as two new space charge computation methods: a
Hermite-Gaussian expansion model, and a cellular analytic
convolution model. Both of these models are designed to
minimize the field error induced when solving Poisson’s
equation for beams with extreme aspect ratios.

GenTrackE is a framework for particle tracking applica-
tions which aims to provide good scalability for very large
parallel processing jobs. The code features either truncated

262

Proceedings of the 2003 Particle Accelerator Conference



Table 3: Summary of code benchmarks with experimental
data.

Code - Machine Quantity Com-
pared

Agreement
Level

ESME - Fermilab
Booster

Longitudinal
parameters

Good

ESME - CERN PS Longitudinal
parameters

Good

Track1D - ISIS Longitudinal
parameters

Good

ACCSIM - CERN PS Beam profiles Good
ACCSIM - KEK PS Beam profiles Good
ORBIT-ORNL - PSR Beam profiles Good
SIMPSON - KEK
Booster

Emittance
exchange

Good

ORBIT-ORNL - Fer-
milab Booster

Emittance
growth

Under study

Best - PSR E-cloud effects Fair

power series maps or time integration methods for track-
ing, and an finite-element approach to space charge with
semi-unstructured griding. Currently, the code has be run
with up to 7×109 grid points. One application making use
the GenTrackE framework is a parallelized, self-consistent
electron-cloud model [13], adapted from M. Furman and
M. Pivi’s probabilistic model [14].

The Unified Accelerator Libraries, or UAL, is not a
particle-tracking code by itself, but is rather a collection of
libraries that address diverse accelerator tasks [15]. Meth-
ods included in the libraries are derived from other codes,
such as ACCSIM, TEAPOT, Zlib, etc. The official ver-
sion of UAL does not currently contain a space charge im-
plementation, but a non-official local version at BNL has
been modified to provide the ORBIT-ORNL space charge
routines. The modification has been successfully used for
studies of the SNS beam, and future plans for UAL include
adding this capability to the official version.

SUMMARY OF BENCHMARKS WITH
EXPERIMENT

An important test of the validity of the models incorpo-
rated into any simulation tool is whether the model can be
successfully benchmarked with experiment. Unfortunately,
only a limited number of beam parameters can be evaluated
through experimental measurement, and the experimental
data is often complicated by effects that are not easily sep-
arated from the physical process under study. The task
in any benchmark is to extract meaningful measurements
where either a single physical phenomenon is isolated, or
in which the effects of other phenomena can be easily iden-
tified. Many of these experiments have been performed and
the data has been used for benchmarking of codes. Table 3
summarizes a number of these benchmarks.

Overall, the success rate for benchmark of simple quanti-
ties, such as beam profiles, is high. However, there is a dis-
tinct lack of benchmarks with more complicated quantities,
such as emittances and coherent tunes. Toward this end, a
plan was formulated at the ICFA Beam Dynamics Mini-
Workshop on Space charge Simulation for a multiple code
benchmark (ORBIT, ACCSIM, IMPACT-MaryLie, Gen-
TrackE, and Best) with existing experimental data from the
CERN PS [16, 17]. Two data sets have been identified for
the study: 1) Emittance measurements while crossing the
integer and half-integer resonances, and 2) measurement of
emittance exchange while crossing the fourth-order Mon-
tague resonance, 2Qx − 2Qy = 0.
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