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INTRODUCTION

The cancellation effect in the dynamics of relativistic
beams on a curved trajectory is studied in Ref. [1] based
on the canonical formulation of the dynamics equations
and retarded potentials. In this paper, we first discuss
in a coherent manner various applications of the cancel-
lation effect, such as a coasting beam, a short bunch in
steady-state interacting with off-orbit particles, transient
self-interaction of a short bunch entering a circular orbit
from a straight path, and a converging beam in a bunch
compression chicane. Next, spectrometer measurement
and Landau damping in microbunching process are dis-
cussed based on new dynamics equations which explicitly
use the cancellation effect.

REVIEW OF THEORY

According to Ref. [1], for a relativistic charged bunch
moving on a curved trajectory with curvature κ(s), the first
order equation for the particle’s horizontal motion is (r =
R + x and R(s) = 1/κ(s)):
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c2dt2
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x
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r
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(1)

where ∆E(t) = E(t) − E0 is the deviation of the kinetic
energy E from the design energy E0, and F col

x is the hor-
izontal Lorentz force (or Talman’s force [2]) due to bunch
collective interaction on the curved path:

F col
x = F CSCF+F eff

x , F CSCF =
eβsA

col
s

r
� e

Φcol + ∆Φ
r

(2)
where F CSCF is the “centrifugal space charge force” (using
retarded potentials), and ∆Φ = Acol

s −Φcol. The change of
E follows

dE

cdt
= F · v/c = −e

dΦ
cdt

+ F eff
v (3)

and thus after integration one gets ∆E/r in Eq. (1)
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r

+
1
r
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F eff
v (t′)cdt′ − e

Φcol

r
(4)

with ∆Etot(t0) = (E+eΦcol)|t0−E0. The effective forces
in Eqs. (2) and (4) are

F eff
x =

∂Lcol
int

∂x
− e

dAcol
x

cdt
, F eff

v = −∂Lcol
int

c∂t
(5)

where ∂x and ∂t only act on Φ and Aλ in the interaction
Lagrangian
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Lcol
int = −e(Φcol −

∑
λ

βλAλ). (6)

Here qλ = eλ · q for q being β or A, with eλ the Frenet-
Serret bases. Using retarded potentials, Φcol and Acol

s ex-
hibit logarithmic dependence on the particles’ transverse
position in bunch due to local interaction singularities.
However, since locally the nearby particles are nearly par-
allel in motion for ultra-relativistic bunches, there is rel-
ativistic cancellation bewteen the local interaction contri-
butions to Acol

s in Eq. (2) and to Φcol in Eq. (4). Simi-
lar cancellation also occurs bewteen Φcol and Acol

s in Lcol
int

in Eq. (6). Thus the effective forces in Eq. (5) are domi-
nated by contributions from the long-range interactions and
are basically free from the logarithmic behavior. After in-
serting Eqs. (2) and (4) into Eq. (1), and letting Gres =
e(Acol

s − Φcol)/r, one gets
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∫ t

t0

F eff
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)
.

(7)
For short bunches on a circular path, σz/R � 1, we have
[1] O(Gres) � O(F eff

x ) � O(F eff
v ). Hence Gres in Eq. (7)

is practically negligible.

CANCELLATION IN VARIOUS CASES

Note the horizontal dynamics is driven by both ∆E/r
and F col

x in Eq. (1), and the cancellation is between the log-
arithmic potentials in each of these two driving terms. In-
cluding one term without the other may lead to unrealistic
results.

F col
x in a Storage Ring

The importance of F col
x in a storage ring, due to the col-

lective contribution of the single particle generated radia-
tion (or acceleration) fields on the curved path, was first
pointed out by Talman [2]. If only F col

x in Eq. (1) is in-
cluded without the ∆E/r term, the drastic dependence of
F col

x (due to Acol
s in Eq. (2)) on the particles’ transverse

position—as shown in Fig. 1 of Ref. [2]—could lead to hor-
izontal tune shift and chromaticity and contribute to the ap-
pearance of nonlinear resonances (Fig. 2 of Ref. [2]). How-
ever, this effect of eAcol

s /r in F col
x of Eq. (2) is basically

cancelled by the effect of eΦcol/r in ∆E/r of Eq. (4).

Cancellation for a Line Coasting Beam

The cancellation effect was first pointed out by Lee [3]
for a coasting beam when both the two driving terms in
Eq. (1) are included. For the line coasting beam example
(βs = 1) in Ref. [3], one gets for x = r −R and w = x/R
(R: radius of equilibrium orbit)

Lcol
int = −e(Φcol − Acol

s ) = e∆Φ
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v = 0, (10)
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which yields
∆E

R
+ F col

x =
∆Etot

R
+ F eff

x . (13)

Note that F col
x is a centrifugal force with a divergent gradi-

ent ∂F col
x /∂x � −2λe/Rx. In contrast, the effective radial

force has negligible gradient compared to ∂xF col
x

∂F eff
x

∂x
=
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Here the constant part of F eff
x serves to readjust the equilib-

rium orbit for each particle
(E + eΦcol)|R − E0

R
+ F eff

x (R) = 0. (15)

Non-inertial Space Charge Force

We now turn to short bunches. For a steady-state line
bunch on a circular orbit with uniform charge distribution
acting on off-orbit particles, the longitudinal electric field is
given by Eq. (5) of Ref. [4], in which the second term gives
the non-inertial space charge force F NSCF. If F col

x is not
included in Eq. (1), the kinetic energy change ∆E induced
by F NSCF could cause extra emittance growth in addition to
that caused by the usual CSR forces, as shown in Figs. 7-
13 of Ref. [4]. However, studies show [5] that F NSCF is
−e dΦcol/cdt term in Eq. (3). Thus once F col

x is included on
the equal footing as ∆E/r in Eq. (1), the integrated effect
of F NSCF, or −eΦcol/r in Eq. (4), is actually cancelled by
the eΦcol/r term in F col

x of Eq. (2).

Transient Longitudinal Force

For a rigid-line-bunch entering a circular orbit from a
straight path, the longitudinal collective force on the parti-
cles is given by Eq. (87) of Ref.[6]:

dE(z, θ)
cdt

= T1(z,R, θ) + T2(z,R, θ) (16)

where for K = −2e2/(3R2)1/3 and zθ = Rθ3/24,

T1 = K [λ(z − zθ) − λ(z − 4zθ)]/z
1/3
θ , (17)

T2 = K

∫ z

z−zθ

dz′

(z − z′)1/3

dλ(z′)
dz′

(18)

with R the radius of the circular orbit, z = s − βct the
longitudinal position of the particle in the bunch, λ the lon-
gitudinal charge density, and θ the angle of the bunch into

the bend. Sometimes in CSR simulations, Eq. (16) is used
to calculate ∆E in Eq. (1) and the consequent effect on the
bunch horizontal dynamics without F col

x as another driving
term for Eq. (1). Comparing with Eq. (3), one finds a part
of dE(z, φ)/cdt in Eq. (16) is related to the potential en-
ergy change. Thus the integrated effect of −edΦcol/cdt
in Eqs. (3) or (16)— which contributes to −eΦcol/r in
Eq. (4)— is actually cancelled by eΦcol/r in Eq. (2) once
F col

x is included in these simulations. After the cancella-
tion, the horizontal dynamics is governed by the effective
forces as in Eq. (7). For example, compared to Eq. (16),
the effective longitudinal force at entrance of a bend is

F eff
v (z, θ) = T ′

1(z, θ) + T2(z, θ) (19)

with T2 in Eq. (18), and T ′
1(z, θ) derived using Ref. [7]

T ′
1(z, θ) = e2

∫ ∞

zθ

dz′
[
dλ(z − z′)

dz′

× 2 sin2(θ/2)√
(z′ − 4zθ)2 + [R(1 − cos θ)/γ]2

]
. (20)

Converging Beams in Chicanes

For a 4-bend bunch compression chicane, the maximum
compression often occurs during the drift before the last
bend, where the hard compression could cause significant
potential energy change Φcol − Φcol(t0) which further in-
creases the kinetic energy spread σδ , as given in Eq. (4).
If only ∆E/r is used in Eq. (1) without F col

x , one would
conclude [8] that significant emittance growth could result
from this ∆σδ as the bunch passes the 4th bend. How-
ever, Φcol in Eq. (4) is actually cancelled by that in Eq. (2).
Thus according to Eq. (7), the horizontal dynamics in the
4-th bend depends on the canonical energy offset ∆Etot at
the entrance of the bend, in addition to the effective forces.
This ∆Etot is only changed by F eff

v generated from the pre-
vious bend, but not by the beam convergence in the drift.

NEW DYNAMICS EQUATIONS

Using (x, x′, z, δ) as dynamical variables, and s as an
independent variable, with δ = (E−E0)/E0, the complete
first order equations of motion for dynamics in the bending
plane are ( kβ(s) is the focusing strength)




dx

ds
= x′

dx′

ds
= −k2

βx +
δ

R(s)
+

F col
x

E0
dz

ds
= − x

R(s)
dδ

ds
=

1
E0

(F col
s + x′F col

x )

. (21)

Here the local (nearby particle) interaction contributions to
the longitudinal and transverse collective Lorentz forces,
F col

s and F col
x , need to be computed carefully; and their ef-

fects on the bunch dynamics eventually get cancelled im-
plicitly as Eq. (21) is integrated over time. Using equations
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in Sec. 2, one can have the following new description of the
dynamics with the cancellation effect explicitly expressed



dx

ds
= x′

dx′

ds
= −k2

βx +
δH

R(s)
+

F eff
x + Gres

E0

dz

ds
= − x

R(s)
dδH

ds
=

F eff
v

E0

(22)

where Gres = e(Acol
s − Φcol)/R(s), and (x, x′, z, δH) are

the new dynamical variables with δH = [(E + eΦcol) −
E0]/E0 (H = E + eΦcol is the Hamiltonian conjugate to
t). For short bunches (σz � R), Gres is negligible; and
F eff

v and F eff
x in Eq. (22) are mainly dominated by the long

range interactions. For a coasting line beam [3], Gres is
comparable to F eff

x . However, the logarithmic singularities
in Acol

s and in Φcol are still cancelled.
To study the microbunching instability in a bunch

compression chicane, we change the dynamical variables
(x, x′, z, δH) to (J, ψ, z̃, δ̃H), with J, ψ the action-angle
variables, z̃ the initial longitudinal position of a particle in
the bunch and δ̃H the initial uncorrelated canonical energy
offset for zero effective forces


x =
√

2Jβ(s) cos[ψ + ψ0(s)] + DxδH

x′ = −
√

2J

β(s)
{sin[ψ + ψ0(s)] + α(s) cos[ψ + ψ0(s)]}

+D′
xδH

z = −D′
xx + Dxx′ + z̃ + R56δH

δH = δ̃H − uz̃
(23)

with β(s) and α(s) the designed twiss parameters in the
horizontal phase space, u the initial linear δ-z correlation
imposed on the bunch by an RF cavity, and [9]

ψ0(s) =
∫ s

0

ds′

β(s′)
, R56(s) = −

∫ s

0

D(s′)
R(s′)

ds′,

Dx(s) =
√

β(s)
∫ s

0

ds′

R(s′)

√
β(s′) sin[ψ0(s) − ψ0(s′)].

(24)
Converting Eq. (22) to equations for the new variables,
we have the Vlasov equation for the distribution function
ρ(J, ψ, z̃, δ̃H , s)

∂ρ

∂s
+

F eff
v

E0
· A +

F eff
x

E0
· B = 0 (25)

with
A = η1

∂ρ

∂J
+ η2

∂ρ

∂ψ
− R56

∂ρ

∂z̃
+ (1 − uR56)

∂ρ

∂δ̃H

,

B = −
[
f1

∂ρ

∂J
+ f2

∂ρ

∂ψ
+ Dx

∂ρ

∂z̃
+ uDx

∂ρ

∂δ̃H

]
,

for
f1(J, ψ, s) =

√
2Jβ(s) sin[ψ + ψ0(s)],

f2(J, ψ, s) =
√

β(s)/2J cos[ψ + ψ0(s)],
(26)

η1 = D′
xf1 − Dxf ′

1, η2 = D′
xf2 − Dxf ′

2 (27)

where f ′
1,2 = ∂f1,2/∂s and D′

x = dDx/ds. At steady-
state, the effective forces yield impedances [9]

F eff
v,x(z)
E0

=
Nre

γ0

∫ ∞

−∞
λ(k)Zeff

v,x(k)eikzdk (28)

Zeff
v =

ik1/3

R(s)2/3
(−0.94 + 1.63i), Zeff

x = − 2
R(s)

.

For (kR)1/3 � 1, one has O(Zeff
x ) � O(Zeff

v ).

DISCUSSIONS

Eq. (22) shows that the dispersion effect is related to the
canonical energy offset δH instead of the kinetic energy
offset δ. This is because in Eq. (21), F col

x contains F CSCF

(as in Eq. (2)) which represents the dispersion effect for the
potential energy eΦcol/E0, just as δ/R(s) in Eq. (21) repre-
sents the dispersion effect for the kinetic energy δ. Conse-
quently, for a single bend spectrometer, due to the existence
of Talman’s force F col

x , the horizontal particle distribution
from the spectrometer measurement is actually related to
the canonical energy spread instead of the kinetic energy
spread. These measurements also include effects of F eff

v

and F eff
x . Therefore the spectrometer data needs to be care-

fully interpreted when the collective interactions are strong,
especially when the potential energy spread is no less than
that of the kinetic energy spread.

For an achromatic bending system, the initial δH(s0) in
Eq. (22) does not directly cause emittance growth. How-
ever, δH(s0) could play a role of Landau damping in the
microbunching process. Previous studies [9] of the mi-
crobunching in a chicane, based on Eq. (21) assuming
F col

x = 0 and Φcol = 0, show Landau damping due to
ρ(J, ψ, z̃, δ̃, 0). However, with F col

x �= 0 and Φcol �= 0,
Eqs. (25)-(28) show that it is really ρ(J, ψ, z̃, δ̃H , 0) which
causes the decoherence for the microbunching process.
Here the distribution over δ̃H at s0 needs to be carefully
determined. The effect of transient F eff

v and F eff
x in Eq. (25)

will be further studied.
The author thanks Ya. S. Derbenev for helpful discus-

sions.
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