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Abstract

The Free-Electron Laser process is the interaction be-
tween an electron beam and a co-propagating radiation
field, resulting in a collective instability with an exponen-
tial growth of the radiation field and the current modulation
in the electron bunch. Although analytical models can de-
scribe the fundamental FEL amplification, the complexity
of the FEL process with a multi-particle system and the
evolution of a radiation field demands numerical calcula-
tion.

To achieve optimum performance the numerical solvers
for FEL codes are highly specialized, using alternative
methods than standard PIC codes. This presentation de-
scribes the basic algorithm for FEL simulations and ad-
dresses in particular the problems and limitations of sim-
ulating the FEL process.

INTRODUCTION

The FEL process is a collective instability [1] where
an electron beam interacts with a co-propagating radiation
field, coupled by the transverse deflection due to a periodic
magnetic field of an undulator or wiggler. The output of the
Free-Electron Laser depends on a large parameter space of
input parameters ranging from the field of the undulator
field, to the quality and pulse length of the driving electron
beam, to the fluctuation in the initial position of each elec-
tron. The numerics have to be precise to several orders of
magnitude in the Fourier components of the current modu-
lation and the amplitude of the radiation field.

With several Free-Electron Lasers planned or under con-
struction [2] it is essential to predict the performance as
accurately as possible. In the design phase analytical for-
mulae [3] are efficient to find the design parameters of the
FEL, then numerical simulations can evaluate the choice of
these parameters and predict any additional change in the
performance with respect to the analytical model.

Modelling of the FEL process is challenging due to the
different scales of the process. On the one hand, the radia-
tion and the electron beam have to be tracked for the undu-
lator length, which can range between one and a few hun-
dred meters. On the other hand, the simulation has to re-
solve electron motion well below the radiation wavelength,
which can range down to 1 Ångstrom. The scale of up to
12 orders of magnitude makes the Particle-in-Cell approach
impractical.

With the ongoing research of high-gain single pass Free-
Electron Lasers [4] over the last 20 years, numerical codes

Table 1: Free-Electron Laser simulation codes, showing the
number of dimensions, ability to do time-dependence, and
harmonics.

Code Beam Dim. Time Harm.
Fast[5] Particles 3D Yes No
Felex[6] Particles 3D Yes No
Felos[7] Particles 3D Yes Yes
Fels[8] Particles 3D No No

Fred3D[9] Particles 3D No No
FS1T[10] Collective 1D Yes No

Genesis 1.3[11] Particles 3D Yes No
Ginger[12] Particles 2D Yes No
Medusa[13] Particles 3D No Yes
Nutmeg[14] Particles 2D No Yes
Perseo[15] Particles 1D Yes Yes

Prometeo[16] Particles 1D No Yes
Ron[17] Collective 3D Yes No

Sarah[18] Collective 1D Yes No
TDA3D[19] Particle 3D No Yes

have been developed. Most of the time they were limited
by the available computer resources of their time and the
wavelength of interest. Long wavelength FELs are easier to
model because the stronger diffraction tends to “wash-out”
finer details in the electron distribution and motion. But, for
VUV and X-ray FELs the performance is more sensitive to
the beam quality, in particular the beam emittance or ex-
ternal effects such as undulator wakefields [20] or errors in
the undulator field [21]. In addition, the start-up from noise
(SASE FEL) and the extension of the wavelength range due
to harmonics have a growing interest.

Table 1 lists the features of several Free-Electron Laser
codes. A beam description by collective variables allows a
faster calculation time but the validity of the output is lim-
ited to the start-up and linear regime of the FEL. Similar, a
SASE FEL process can only be simulated when the codes
covers time-dependent variation of the electron beam and
radiation field.

In the following sections we describe the core algo-
rithm of a FEL code and the additional problems of time-
dependent simulation. With the ongoing effort to better
predict the FEL output the simulations has been extended
to cover the entire process from the generation of the elec-
tron bunch to the delivery of the FEL radiation to the ex-
perimental station, where the FEL process is only a part of
the start-end simulation [22]. The last section covers this
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final topic.

CORE ALGORITHM

With a few exceptions, the fundamental assumption of
all Free-Electron Laser simulation codes is that the interac-
tion between the electrons and the radiation field is negli-
gible over one undulator period. A significant effect has to
be accumulated over many periods, restricting the interac-
tion to a narrow frequency bandwidth around the resonant
wavelength of the Free-Electron Laser. The electron mo-
tion is averaged over one undulator period, eliminating the
requirement to resolve each period with multiple integra-
tion steps. In fact, the integration step size can be chosen
to be a fraction of the gain length [23] of the Free-Electron
Laser. This is beneficial for short wavelength FELs, where
the number of undulator periods is large in comparison to a
long wavelength FEL, but the number of gain lengths and,
thus, the number of integration steps remains the same.

The natural selection of a narrow bandwidth due to the
resonance approximation, allows to expand the radiation
field around the dominant oscillation exp[ik(z−ct)], where
k is the wave number of the resonance wavelength. The
change in the field amplitude A is small compared to this
oscillation and the field equation is simplified by the parax-
ial approximation to[
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where fc is the coupling coefficient between the electron
beam and the radiation field, au is the undulator parameter,
γ is the electron energy and θ = (k + ku)z − ct is the pon-
deromotive phase of the electron with ku as the undulator
wavenumber and µ0 as the magnetic permeability.

Because the continuous amplitude A cannot be described
numerically in full detail, the field is either represented by
a finite set of grid points or a set of orthonormal functions.
The first approach is the most common and the field equa-
tion is solved by standard Finite-Difference methods [24].

For SASE FELs, which starts from the spontaneous ra-
diation at the beginning of the undulator, the source term
in the right hand side of Eq. 1 has strong fluctuations in the
transverse direction before the process of transverse coher-
ence smooth out the transverse bunching profile. In this ini-
tial stage many higher modes couple with the beam with al-
most equal strength. Thus, the growth rate in the calculated
power depends strongly on the number of available modes
or grid points. This artifact arises from the fact that the inte-
gration step size and the grid size determines the frequency
interval and solid angle in which the spontaneous radiation
is emitted [25]. In the limit of infinitely small step sizes
and grid spacing the full power of the spontaneous radiation
would be included by the simulations. For X-ray FELs, the
initial power level of the higher modes can mask the expo-
nential growth of the spontaneous radiation emitted in the
coherent solid angle of the FEL radiation. Fig. 1 shows the
evolution of the radiation power in the near field for the 3D

code Genesis 1.3 and the 2D code Ginger. The difference
in the power level of these codes is apparent. The number
of modes is about a factor of 200 higher in Genesis 1.3 than
in Ginger. The amount of total power for the 3D case is in
good agreement with the theory ([25]).

Genesis 1.3

Ginger

Theory

Figure 1: Radiation power in near field zone for the 3D
code Genesis 1.3, the 2D code Ginger and the theoretically
resolved power, using the grid dimension and integration
step size as in the Genesis 1.3 run.

The integration of the equations of motion for the
macro particles, resembling the phase space distribution
of the electron beam, typically uses a simple and sta-
ble solver such as 4th order Runge-Kutta or Predictor-
Corrector methods [26]. External effects such as wake
fields [27] or the energy loss due to the emission of the
spontaneous radiation [28] are applied by pre-calculated
values or analytical formulae. A self-consistent description
would render the calculation speed of the highly special-
ized case of the Free-Electron Laser interaction intractable.

For SASE simulations the codes must supply the correct
statistics in the current fluctuation of the electron bunch.
Averaging over many shots, the phase of the bunching fac-
tor b =< exp[iθ] > should be a uniform distribution, while
the absolute square follows a negative exponential distri-
bution, with a mean value of the inverse of the number
electrons [29]. The number of macro particles is typically
much smaller than the number of electrons to be modelled.
Pure random phases of the macro particles would yield too
strong of fluctuation in the current and, thus, too high emis-
sion levels of the spontaneous radiation.

To avoid the noise statistics problem the loading of the
phase space distribution is split into three steps. The
first step fills all dimensions except for the ponderomo-
tive phase, which is equivalent to the longitudinal position.
Typically a quiet start method [30] is applied, based on
the generalize bit-reverse technique of the Halton sequence
[31].

In the second step the longitudinal phase is added, ei-
ther by an equidistant distribution, a random number gen-
erator or a Halton sequence, but it fills only one out of nb

bins in the ponderomotive phase between 0 and 2π. Then

204

Proceedings  of  the  2003  Particle  Accelerator  Conference



the entire 6D distribution is copied into the remaining bins.
Each macro particle and its nb − 1 mirror particles form a
beamlet. The bunching factor of each beamlet is ensured
to be zero due to the mirror procedure. The choice of nb

also determines the validity of the higher harmonics in the
bunching factor. The calculated value is physically mean-
ingful only for harmonics nh up to nh < (nb − 1)/2 [33].
Therefore the minimal requirement is four bins if only the
fundamental radiation (nh = 1) is considered in the simu-
lation.

The last step models the fluctuations in the particle po-
sitions. The Penman algorithm [32] adds a random offset
from a uniform distribution to each macro particle. The
width of the uniform distribution depends on the number
of electrons to be simulated. A further improvement is the
method of complex harmonic phasors [33], which also re-
produces the correct statistic for the higher harmonics in
the bunching factor.

Fig. 2 shows the basic flow diagram for the majority of
FEL codes. Steady-state codes have the grey parts omitted.
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Figure 2: Algorithm for FEL simulations. Additions for
time-dependent simulations are marked with grey boxes.

TIME-DEPENDENT SIMULATION

A computationally efficient method is the steady-state
simulation, where any longitudinal variation in the electron
beam parameter of radiation field is excluded. However,
the efficiency comes at a price: less physics is included.
The simulation covers only a single slice with a thickness
of one radiation wavelength. The effect of slippage is not
sufficiently covered because the periodic boundary condi-
tion in the longitudinal direction feeds the forward propa-
gating radiation field back into the same slice.

Any simulation of longitudinal variation in the electron
beam, including the initial fluctuation of the electron posi-
tions for the SASE operation of an FEL, require incorpo-
rating slippage effects in the simulation. For this purpose
the electron bunch and the radiation field are sampled with
multiple slices of constant spacing. A fully consistent de-
scription would keep all slices in the memory at once. Be-
cause each slice has about 10000 macro particles and the
total number of slices can easily exceed 100000 for short
wavelength FELs, the high memory demands could only
be fulfilled by a massive parallel computer architecture.

The memory problem is solved by assuming a “quasi”-
periodic situation of the radiation field and electron beam.

The simulation is split into steady-state simulation over a
short subsection of the undulator and advancing the radi-
ation field to the next electron slice. For a giving spac-
ing ∆t the length of the steady-state integration is ∆z =
(λu/λ)c∆t. Because the information is propagated only
in the forward direction, the simulation can start with the
first electron slice at the tail of the electron bunch. After
each integration length ∆z the radiation field is temporary
stored in memory or on the hard disk. After the slice is fully
propagated through the undulator, the next electron slice is
loaded and seeded with the radiation field in memory. The
radiation field is again stored for the next slice after the in-
tegration distance ∆z. Using this method the number of
slices do not impose a limit on the memory. The maximum
required information is the sampled radiation field with a
spacing of ∆t over the full slippage length of the FEL.

This sequential integration along the electron bunch
from the tail to the head introduces several restrictions for
the validity of the simulation:

First a strong impact of steady-state integrations has to
be avoided by a frequent advance of the radiation field.
Typically the occurring spikes in the radiation profile have
to be resolved with enough slices, which is equivalent to
the statement that ∆z has to be much smaller than the FEL
gain length or that the sampling of the radiation field can
resolve the entire FEL bandwidth in the frequency domain.

Second, the seeding for the first slice is unknown if only
a subsection of the electron bunch is simulated. This results
in invalid field values over the first slippage length. There-
fore the total time window – the product of the number of
slices and the spacing ∆t – must be larger than the slippage
length.

Third, the gain is reduced if the mean energy of the elec-
tron slice deviates from the resonant energy of the central
wavelength, as it is the case of an electron beam with an
energy chirp [34]. The problem is solved by a smaller spac-
ing of the slices, which is equivalent to a larger frequency
bandwidth of the FEL simulation.

START-END SIMULATION

The initial conditions of the electron beam or radia-
tion beam are often more complicated than are described
by a few parameters such as mean and rms values of the
6D phase space distribution. In addition, X-ray Free-
Electron Lasers have co-operation lengths [35] shorter than
the bunch length. Different parts of the bunch amplify the
radiation independently. Projected quantities such as the
emittance of energy spread loose the merit of describing
the beam. Instead sliced values are of relevance with a slice
thickness given by the co-operation length. Fig. 3 shows
the input phase space distribution for the LCLS X-ray FEL
and the output radiation profile of the FEL from a start-end
simulation. The shape of the distribution denies a parame-
terization of the beam profile with mean energy and energy
spread values, because the FEL performance depends crit-
ically on the explicit shape of the distribution in energy.
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To predict the performance of a Free-Electron Laser re-
quires an effort to model the entire FEL process, starting
from the electron bunch creation to the experimental sta-
tion for the laser light. Because the entire process cannot
be simulated by a single code, a chain of specialized codes
are used. The interface between the codes is the exchange
of entire particle or field distributions, or if the distribution
is simple enough, a list of mean and rms values of the dis-
tribution.

The following is a list of the major components of the
start-end simulation chain and the emphasize of the phys-
ical/numerical problems, addressed by the codes. The
codes, listed here, have been used in context of modelling
existing and future Free-Electron Lasers.

In the rf photo electron gun the electrons experience a
strong acceleration from being at rest to a highly relativistic
motion. The space charge forces of the generated electron
beam determines the slice emittances. Point-point calcula-
tion scales with the square of the macro particle numbers,
which imposes a limit for the acceptable number of parti-
cles. RF gun codes execute faster when the space charge
field is evaluated on a grid. The grid filters out high fre-
quency components, which would otherwise yield a strin-
gent restriction on the integration step size. The parti-
cles are tracked to an energy, where the space charge field
has a negligible impact. Codes, already successfully used
in start-end simulations, are PARMELA [36] and ASTRA
[37].

The propagation of the beam through the linac uses stan-
dard tracking methods such as matrix multiplication, in-
cluding higher order effects. The support of wakefields are
essential for a complete simulation of the beam transport.
The overall execution time is fast compared to other codes
in the start-end simulation, but due to the large set of in-
put parameters such as field strength of each magnet or the
phase and amplitude of each rf cavity, the optimization pro-
cess is rather complex. Due to its scripting capability, EL-
EGANT [38] is useful tool for this task.

Although ELEGANT has an analytical model of the co-
herent synchrotron radiation [39] in a bend, the process of
bunch compression in a magnetic chicane can be calculated
in more detail with the specialized code Trafic4 [40]; the
price is an execution time comparable to time-dependent
FEL simulations.

Time-dependent simulations have been described in the
previous chapter. For a complete picture of the beam
dynamics within the undulator, the following processes
should be included in the simulations: undulator wake-
fields, energy loss by the emission of spontaneous radia-
tion, the increase of the energy spread due to the quantum
fluctuation [41] in the emission of spontaneous radiation.
The codes FAST, GINGER and GENESIS 1.3 are capable
of modeling the above and are used in a start-end simula-
tion.

The incorporation of the propagation of the FEL radia-
tion through the beam line optics is currently under devel-
opment [42]. Various programs exist, which can advance a

single amplitude/phase front of the output radiation. How-
ever the output of time-dependent FEL codes is a lattice
of these wavefronts, creating a 3D grid of the radiation
field. Optical elements such as gratings or monochroma-
tors would require the Fourier transformation, the calcula-
tion of the Green’s function for the optical element and then
the inverse Fourier transformation to get back the field in-
formation in time domain. While the time-dependent FEL
simulations sequentially calculate the radiation field with-
out having the entire field in memory, it is essential for the
Fourier transformations. To limit the memory demand a
filter function might be necessary to reduce the amount of
information in the field.

Figure 3: Initial phase space distribution at the entrance
of the LCLS undulator (top graph) and radiation profile at
the exit of the FEL (bottom graph), based on a start-end
simulation for the LCLS X-ray FEL.

CONCLUSION

Numerical tools are invaluable for the modeling of high-
gain Free-Electron Lasers, because they extend the capa-
bility to model realistic cases with many input parameters.
The algorithm deviates from standard PIC codes due to the
extreme scale of the FEL process. While the undulator
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length is up to 100 m long, the field and electron distri-
bution has to be resolved on a sub-Ångstrom level.

Various FEL codes exist, following similar approachs to
model the FEL interaction. With the ongoing growth in
computational speed and memory, the codes have become
capable of handling more complex cases with a finer detail
of description and more macro particles and grid points.

Besides the continuous improvement in the algorithm of
the FEL codes, the interface with other accelerator/non-
FEL codes has been improved. This allows to simulate
the entire process, starting from the rf gun to experimen-
tal station, using the FEL light. However, these start-end
simulations are complex and require an experienced user
for each code in the simulation chain.
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