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Abstract

To reach high peak currents driving Free-Electron Lasers
an initial chirped electron bunch is compressed in a bunch
compressor. The interaction of the electron beam with its
radiation field can yield a collective instability, which am-
plifies any initial modulation in the current profile. We
present a model, which allows one to derive an explicit an-
alytical expression for the gain of the microbunch instabil-
ity. The results are compared to those of the more complex
analytical models.

INTRODUCTION

Many FEL experiments [1] requires a bunch compressor
to increase the peak current. The magnetic chicane resem-
bles a single period of an undulator and like the bunching
effect in an FEL [2, 3] the interaction between the coherent
synchrotron radiation (CSR) [4] and the electron beam can
enhance the amplitude of an initial current modulation[5].
The mechanism has striking similarity to the FEL process,
although the electron motion is more complex than the av-
eraged motion needed for the FEL model. The interaction
with the CSR field is expressed by a potential, acting in-
stantenously on the electrons.

MOTION IN A MAGNETIC CHICANE

A magnetic chicane consists typically of bending mag-
nets, drifts, and, optionally, focusing quadrupoles. For a
simpler comparison to the FEL we exclude the latter two
components from the discussion.

Because the electron beam interacts with the sponta-
neous radiation, the dispersion function η has to be calcu-
lated for all positions, where the electron energy changes.
We sum up all contributions to the longitudinal position,
resulting in

ζ(s) = ζ(s0) +
∫ s

s0

δ(s′)R̃56(s, s′)ds′. (1)

Here s and s0 denote the final and initial position on the de-
sign orbit, respectively, ζ = ct is the position in the frame
of the moving bunch and δ = (γ−γ0)/γ0 is the normalized
deviation of the electron energy from the mean energy γ0.

We consider an idealized chicane, which consists of
three bending magnets with a bend radius R and no drift
space separating them. The outer magnets have a length
of L while the inner one, which bends in the opposing di-
rection of the outer two, is twice as long. With the initial

conditions η(s′) = 0 and η′(s′) = 0 and a small bending
angle θb ≈ L/R � 1, the dispersion function is
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where the pair of Roman numbers indicates, in which
dipole the end and start positions s and s′, respectively, are
located. We incorporated the bend direction of the dipoles
into the sign of the bend radius with R(s) = R in the first
and third dipole and R(s) = −R in the second dipole.

The differential equation for the longitudinal motion
(s0 = 0) becomes

dζ

ds
=

∫ s

0

δ(s′)
s − s′

R(s)R(s′)
ds′. (3)

To describe a microbunched distribution of electrons, we
assume a coasting beam with a small modulation

I(ζ, s) = I0 [1 + |b(s)| cos(kζ + φ(s))] , (4)

where k is the modulation wavenumber. The potential [4]
seen by the electrons is

W (ζ) = − 2
(3R2)

1
3

1
ζ

1
3

∂

∂ζ
(5)

for ζ < 0, and zero otherwise. The energy change of any
given electron is

dδ

ds
= − I0

IAγ0

2Γ( 2
3 )k

1
3

(3R2)
1
3
|b(s)| sin

(
kζ + φ(s) +

π

3

)
. (6)

The growth of the energy modulation scales linearly with
the modulation of the current.

THE LOW GAIN MODEL

A change in the particle energy has a delayed effect on
the particle’s longitudinal position, which grows with the
third power in s. In addition, the change in the longitudinal
position is also inhibited by the change in the polarity of
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the bending magnets. Particles with higher energy fall be-
hind due to the larger bend radius, but catch up due to the
shorter path length after a polarity change. Thus, for short
time scales, and low gain, δ(s′) can be expected to change
linearly in s′. This assumption of klystron-like behavior is
invalid for high currents. We discuss this limit further in
the following section.

We model the initial current by a equidistant distribution
plus an added sinusoidal modulation in the positions with
∆ζj = ∆ζ sin(kζ0,j + φ) for the jth electron, where ζ0

is the initial position of the electron. Because the effective
radiation potential is harmonic in ζ, the resulting modula-
tion in the longitudinal position is harmonic as well with
δζ = Z(s) sin(kζj,0 + ψ), with Z(0) = 0. In our low
gain model the initial offset ∆ζ and the modulation am-
plitude Z(s) are much smaller than the modulation wave-
length. thus, the bunching factor can be approximated with
b(s) = k[∆ζeiφ + Z(s)eiψ].

As long as Z(s) is comparable to the initial modulation
amplitude ∆ζ, the bunching factor can be taken as con-
stant and Eq. 6 can easily be integrated, giving a linear de-
pendence on s. Inserting δ(s) into Eq. 3, the longitudinal
position evolves in the chicane as

ζj(s) = ζj(0) − I0

IAγ0

2Γ
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)
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)
Φ(s) , (7)

with

Φ(s) =
∫ s

0
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0
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The Roman numerals indicate the dipole in which the
position s lies. The final, normalized amplitude of the sine-
term in Eq. 7 is

ξ =
I0Γ

(
2
3

)
2IAγ0

(
8L3k

3R2

) 4
3

. (8)

With kZ(4L) = ξ|b(0)| � 1 the gain, defined as the
ratio between final and initial amplitude of modulation, be-
comes

G =
|b(4L)|
|b(0)| =

√
1 + ξ + ξ2. (9)

As an example of a generic magnetic chicane, modeling
the first LCLS bunch compressor (γ = 500, I0 = 100 A,
R = 12 m and L = 1.5 m), an initial modulation with a
period of 5µm would grow by a factor of 25.

The gain growth (Eq. 9) has a singularity at a zero mod-
ulation period length. This artifact is removed if energy
spread is included in the model. For a Gaussian energy dis-
tribution with rms spread σδ the current modulation evolves
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Figure 1: The function Φ (Eq. 8).

as

I = I0

[
1 + e−

1
2 (σδR56k)2 |b(0)| cos(kζ + φ)

]
. (10)

The modulation decays if the spread in the longitudinal
position σδR56 is comparable with the modulation period
length. The initial modulation is sheared mainly in the sec-
ond dipole, where the value of matrix element R56 changes
significantly. Because the seed for the microbunch insta-
bility – the accumulated change in the electron energy –
occurs before that, the change in the longitudinal position
(Eq. 8) is hardly effected. We can just apply the damping
factor due to the energy spread to the previous results of
Eq. 9. With R56(4L, 0) = −(4/3)L3/R2, the final gain is
now given by

G = e−α|ξ| 32 √
1 + ξ + ξ2, (11)

defining the normalized energy spread as

α =

√√√√
(

IAγ0

2I0Γ
(

2
3

)
)3

σ2
δ . (12)

For the LCLS case with an energy spread of 0.01% (α =
0.05), the gain at 5 µm would be reduced by 7 orders of
magnitudes.

THE HIGH GAIN MODEL

In our low gain model we assumed that the CSR mi-
crobunching instability does not drive any bunching within
the first dipole. To qualitatively place a limit on this as-
sumed scenario, we develop here a high-gain, exponential
growth model as well. There may be situations where the
exponential gain does not assert itself in the first dipole,
but may, by compression and thus higher current, become
notable in the last dipole.

We define the collective variables B = −ik < e−iΨζ >
and ∆ =< e−iΨδ >, where Ψj = kζ0,j is the initial phase
of the jth electron of a uniform distribution. The equations
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of motion for a cold beam become

d∆
ds

= −ρ4
CSR

kR2
ei π

3 B (13)

dB

ds
= −i

k

R2

∫ s

0

∆(s − s′)ds′, (14)

with the definition of the dimensionless ρCSR-parameter
expressed as

ρCSR =
[

I0

IAγ0
4

1
3 Γ

(
2
3

)] 1
4

(kR)
1
3 . (15)

The equations can be combined into a forth order differ-
ential equation. Using the ansatz B ∝ exp[iΛs] we ob-
tain the dispersion relation Λ4 = (ρCSR/R)4 exp(i5π/6).
Two of the four roots have a negative imaginary
part, corresponding to an exponentially growing insta-
bility. The growth rates are (ρCSR/R) sin(7π/24) and
(ρCSR/R) sin(5π/24), respectively. The gain length of the
high-gain CSR instability is roughly R/ρCSR. Because the
calculations are based on a relatively small deflection angle
(L � R) exponential gain within a single dipole becomes
significant only for ρCSR > R

L � 1.
The start-up regime determines after how many gain

lengths the exponential growth becomes dominant. The
two growing modes have similar growth rate but different
phase slippages (real part of Λ), so that the interference be-
tween these two is still noticeable after several gain lengths
(Fig. 2). It takes at least 5 gain lengths before the bunching
factor has grown by one order of magnitude, compensating
an initial amplitude drop.

0 5 10 15 20 25

s ρ/ R

-2

-1

0

1

2

3

(1
/B
)d
B
/d
s
/
|I
m
(Λ

1
)|

Figure 2: Growth rate of the bunching factor, normalized
to the growth rate of the dominant growing mode.

For a characteristic spread σδ in energy the momentum
dispersion couples it to a phase spread of approximately
(k/6R2)σδs

3. In units of the gain length (ŝ = sρCSR/R)
the normalized phase spread σ̂δ = (kR/6ρ3

CSR)σδ is in-
dependent on the bend radius and wavelength. An estimate
on the mitigation of the instability by the energy spread is
σ̂δ < 0.02 by this criterion – any value larger than 0.02
would smear out the modulation and completely suppress
the exponential growth of this instability.

CONCLUSIONS

We have derived a simple low-gain model to calculate
the growth of an initial current modulation within a mag-
netic chicane. As in a klystron, the physics is split into the
initial modulation in beam energy, and a change in the lon-
gitudinal position (followed by an enhanced emission level
of radiation). The major assumption in our low-gain model
is that the beam current modulation, which generates the
coherent synchrotron radiation, is held constant over the
entire chicane. The klystron-like assumption implies that
the system does not have an exponential gain, but rather
acts as a linear amplifier where the gain coefficient is de-
pendent on the physical details of the beam and chicane.
Fig. 3 shows the difference, however, between our klystron-
like model and a self-consistent, more complex model [5].
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Figure 3: Evolution of the gain along the chicane, using
the low gain model (Eq. 9) and a self-consistent numerical
simulation (solid and dashed line, respectively). The input
parameters are I0 = 100 A, γ0 = 500, R = 12 m and
L = 1.5 m.

In order to extend the low-gain model to account for self-
consistent behavior, we have developed a high gain model
with a gain-length proportional to R/ρCSR. The parameter
ρCSR must have a value in excess of unity, so that exponen-
tial gain occurs within a single dipole.
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