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INTRODUCTION

A relativistic electron beam moving in a circular orbit
in free space can radiate coherently if the wavelength of
the synchrotron radiation exceeds the length of the bunch.
In accelerators coherent radiation of the bunch is usually
suppressed by the screening effect of the conducting walls
of the vacuum chamber [1, 2, 3]. The screening effect is
much less effective for short wavelengths, but if the wave-
length is shorter than the length of the bunch (assuming a
smooth beam profile), the coherent radiation becomes ex-
ponentially small. However, an initial density fluctuation
with a characteristic length much shorter than the screen-
ing threshold would radiate coherently. If the radiation re-
action force is directed so that it drives the growth of the
initial fluctuation, one can expect an instability that leads
to micro-bunching of the beam and an increased coherent
radiation at short wavelengths.

In Ref. [6], the growth rate of the beam instability driven
by the coherent synchrotron radiation (CSR) was found
using the so called “CSR impedance” [4, 5] that neglects
the shielding effect of the walls and assumes a continu-
ous spectrum of radiation. In many cases, the instability
is limited to relatively long wavelengths, and it may be af-
fected by the wall shielding effect [1]. Close to the shield-
ing threshold, one has to take into account that the spec-
trum of the synchronous modes of radiation is discrete, and
the instability may be driven by a single synchronous mode
rather than a continuous spectrum.

In this paper we study a linear regime of single-mode
CSR instability. As in Ref. [6], we assume that the bunch
is much longer than the wavelength of the modulation and
consider a coasting beam model. The nonlinear regime of
the instability is described in accompanying paper [7].

SYNCHRONOUS MODES IN TOROIDAL
BEAM PIPE CLOSE TO SHIELDING

THRESHOLD

A relativistic beam moving in a toroidal beam pipe in-
teracts with synchronous modes that have phase velocity
equal to the speed of light. For a perfectly conducting walls
of the toroid, those modes have discrete frequencies. Such
modes have been extensively studied in the past [3, 8]. Re-
cently, a new approach to the problem [9] extended the pre-
vious analysis and allowed to treat arbitrary cross sections
of the toroid.

Following Ref. [9], we assume that the characteris-
tic size of the pipe cross section a is much smaller than

the toroid radius R, so that the ratio
√

a/R is a small
parameter. For a given toroid, the synchronous modes
have wavenumbers k greater than a minimal value kmin =
ωmin/c:

k ≥ ωmin

c
∼ R1/2

a3/2
� a−1 .

Each mode is characterized by its frequency ωn, the
wavenumber qn = ωn/c, and the group velocity vgn. The
wake of each mode is

wn(z) = 2χn cos (qnz) , (1)

where χn is the loss factor. The total wake is the sum of
partial contributions of all modes: w(s) =

∑
n wn(s).

The lowest synchronous mode wavenumber is of order
of k0, where

k0 =
π

a

√
R

a
.

For example, for a beam pipe of a square cross-section
with the side a, kmin = 1.52 k0. The loss factor per
unit length χ1 and the group velocity vg1 for this mode
are χ1 = 4.94/a2, 1 − vg1/c = 0.62 a/R . Note that
such modes propagate with the group velocity close to the
speed of light. The next mode with a nonzero loss fac-
tor has a frequency ω2 = 2.79 ck0 and the loss factor
χ2 = 3.01/a2. We emphasize here that the distance be-
tween the synchronous modes in the vicinity of ωmin is of
the order of their frequency, and in that sense the modes are
well separated on the frequency scale. Similar results hold
for the round toroidal pipe [9].

INTERACTION OF THE BEAM WITH A
SINGLE SYNCHRONOUS MODE IN

LINEAR APPROXIMATION

The interaction of the beam with electromagnetic waves
is usually described in terms of the beam impedance (see,
e.g., [10]). For discrete synchronous modes, the beam
impedance has singularities centered at the mode frequen-
cies. In this case, a direct application of the standard ap-
proach may give an incorrect result. In Ref. [11], a deriva-
tion of equations for beam-wave interaction is given based
on the Maxwell-Vlasov system of equations without using
the concept of the impedance. In this section, we obtain
the equations of Ref. [11] using a simple heuristic argu-
ment that “fixes” the conventional approach by taking into
account the effect of retardation.

We use a one dimensional model for the beam, neglect-
ing effect of the finite transverse emittance and considering
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a distribution function f(z, δ, t), where z is the longitudinal
coordinate measured from a reference particle moving with
the speed of light, and δ is the energy offset relative to the
nominal energy E0, δ = (E − E0)/E0. We also assume
that the modulation wavelength is small compared to the
bunch length and consider a coasting beam with the linear
density nb equal to the local linear density of the bunch.

In the linear approximation, the perturbation due to the
electromagnetic field can be considered as small: f =
f0(δ) + f1(z, δ, t) , with |f1| � f0. The linearized Vlasov
equation for f1 is

∂f1

∂t
− ηcδ

∂f1

∂z
+

e

γmc
E(z, t)

∂f0

∂δ
= 0 , (2)

where η is the momentum compaction factor, γmc2 is the
nominal beam energy, and E(z, t) is the longitudinal com-
ponent of the electric field. The function f is normalized
so that

∫
fdzdδ gives the number of particles in the beam.

The usual formula for the electric field in terms of the
wake function is [10]:

E(z, t) = −e

∫ ∞

z

dz′
∫

dδ w(z′ − z)f1(z′, δ, t) . (3)

However, it misses an important effect of the wake retarda-
tion that we need to take into consideration here. Indeed,
the wave radiated at position s′ at time t′ and propagating
in the forward direction to s, such that s > s′, will take
time t− t′ = (s− s′)/vg to arrive at the destination, where
vg is the group velocity of the wave. Since s′ = z′+ct′ and
s = z + ct we find from the above relation the retardation
time between the emission and arrival in terms of coordi-
nate z: t− t′ = (z′ − z)/(c− vg). To include the effect of
the retardation in Eq. (3), we need to take the distribution
function in Eq. (3) at the time of emission of the wave:

E(z, t) = −e

∫ ∞

z

dz′
∫

dδ w(z′ − z)

× f1

(
z′, δ, t − z′ − z

c − vg

)
.

This equation replaces Eq. (3) in our derivation. Contrary
to the usual case of the geometric impedance, where the
group velocity is small, effect of retardation here is impor-
tant because vg is close to the speed of light.

Note, that for the free space CSR, the retardation time is
equal to [24R2(z′ − z)]1/3 defined by the difference of the
path length along the circle for the beam and the straight
line for the radiation. A more detailed study of the retar-
dation effect for the CSR wake in vacuum can be found in
Ref. [12].

For what follows, it is convenient to introduce the
Fourier transform g1 of the perturbation of the distribution
function g1(ω, q, δ) =

∫
dtdz ei(ωt−qz)f1(z, δ, t) . It fol-

lows from Eq. (2):

g1(ω, q, δ) = − ie

γmc

E(ω, q)
ω + ηcδq

∂f0

∂δ
, (4)

where E(ω, q) =
∫

dtdz ei(ωt−qz)E(z, t) . The quantity
E(ω, q) can be found by Fourier transforming Eq. (4) and
using the wake from Eq. (1):

E(ω, q) =
∑

n

−ieχn(c − vgn)
ω + (c − vgn)(q − qn)

∫
dδg1(ω, q, δ) .

(5)
To obtain the above equation, we assumed that the fre-
quency |ω| ∼ (1−βg)|q−qn| � ωn, which is equivalent to
using only the synchronous part of the wake: cos(qnz) →
e−iqnz/2. Combining Eqs. (4) and (5) yields the dispersion
relation

1 = −
∑

n

λn

ω/c + (1 − βgn)∆qn

∫
dδ

∂f0/∂δ

ω + ηcqδ
, (6)

where λn = rec(1− βgn)χn/γ, ∆qn = q − qn, with re =
e2/mc2. In Eq. (6) we took into account that vgn ≈ c. As
always in stability theory, the integration in Eq. (6) goes
in the complex plane above the pole δ = −ω/ηcq. For
a real value of q, Eq. (6) defines a complex frequency ω
the imaginary part of which gives the growth rate of the
instability. Alternatively, we can consider real ω and find a
complex wavenumber q describing a periodic perturbation
growing or decaying along the beam pipe.

Note that the frequency of the mode Ω observed in the
laboratory frame, where it has a dependence ei(qs−Ωt), is
equal to Ω = ω + qc.

DISPERSION RELATION FOR A SINGLE
MODE

In the single-mode approximation, we leave only one
term in the dispersion equation Eq. (6) corresponding
to the lowest synchronous mode with frequency ωn and
qn = ωn/c. Let us assume that the distribution func-
tion f0(δ) is Gaussian with the rms energy spread δ0,
f0 = (nb/δ0)ρ0(δ/δ0) with ρ0(ξ) = e−ξ2/2/

√
2π. Eq.

(6) takes the form

ω

c
− (1 − βgn)∆qn = − nbλn

ηωnδ2
0

∫ dξ dρ0
dξ

ω
ηωnδ0

+ ξ
, (7)

where we replaced q under the integral by qn and used
qn = ωn/c. Depending on the ratio ω/ηωnδ0, there are two
possible regimes for the instability: a large energy spread
regime, when |ω| � |ηωnδ0|, and a “cold beam” approx-
imation when the opposite inequality holds. We consider
here the latter case only, as a more relevant to the param-
eters of the existing accelerators (see below). In this case,
we can evaluate the integrand in Eq. (7) asymptotically in
the limit |ω/ηωnδ0| � 1, which results in the cubic disper-
sion equation:

ω2
[ω

c
− (1 − βgn)∆qn

]
= −nbλnηωn . (8)

For ∆qn = 0, one of the roots has a positive imaginary
part:

ω = µ eiπ/3 , (9)
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where we introduced the parameter µ

µ = (nbλncηωn)1/3 = c

[
renbωnηχn

cγ(1 − βgn)

]1/3

.

Note that for a cold beam there is no threshold for the in-
stability. The estimate of the integral term in the dispersion
equation used above neglects the Landau damping and is
valid provided |µ| � ηωnδ0.

For a general case of arbitrary detuning ∆qn, Eq. (8) can
be written in the dimensionless form as

x2(x + y) + 1 = 0 , (10)

by introducing x = ω/µ, y = c∆qn(1 − βgn)/µ . Eq. (10)
can be easily solved numerically—it has three roots one of
which corresponds to the instability. The maximum growth
rate is achieved at zero detuning, ∆qn = 0 and is equal to
Im ω =

√
3/2µ.

Table 1 gives parameters and compares the growth rate
for four accelerators: the Low Energy Ring (LER) and the
High Energy Ring (HER) of PEP-II accelerator at SLAC,
Advanced Light Source at the Berkeley National Labora-
tory, and the VUV ring at the National Synchrotron Light
Source at BNL. For the ALS, we used beam parameters
for the regime in which bursts of infrared radiation were
observed [13]. Calculations were made for the lowest syn-
chronous mode (which frequency is denoted by ω1) assum-
ing a square cross section of the vacuum chamber with
the size a equal to the vertical full gap of the beam pipe.
Since the real shape of the cross section usually differs
from the square, the results in the table should be con-
sidered as a rough estimate of the instability parameters.
For the linear density of the beam nb, we used the quan-
tity Np/

√
2πσz , which gives the maximum linear density

in a gaussian bunch (Np is the number of particles in the
bunch, σz is the rms bunch length). Note that the ratio
µ/ηω1δ0 in the last line of the table related the cold beam
approximation—it is large in all cases except for the HER
PEP-II where it is close to one.

DISCUSSION

The model developed in this paper considers a ring as
a perfect toroid with a constant bending radius. We de-
rived equations for the beam-mode interaction, found the
growth rate for the instability, and estimated it for several
machines. We have shown that in this case, due to the per-
sistent interaction with a resonant mode, the beam becomes
unstable even at low currents.

In real lattice, bending magnets are usually separated by
straight sections, which also have a different cross section
of the vacuum chamber. The beam-mode interaction ceases
in the straight sections and the amplitude and phase of the
mode will most likely change after the passage through the
straights. The beam density modulation induced in one
bend, after passage through a straight section, will serve
as a seed for the instability in the next one. We expect that

Table 1: Parameters relevant to the instability for PEP-II
low energy (LER) and high energy (HER) rings, ALS, and
VUV NSLS ring.

Parameter LER HER ALS VUV NSLS

Energy, GeV 3.1 9.0 1.5 0.81
η, 10−3 1.3 2.1 1.4 2.4
δ0, 10−4 8.1 6.1 7.1 5.0
nb, 1010 cm−1 3.7 0.82 7 3.6
a, cm 5 5 4 4.2
R, m 13.7 165.0 4.0 1.9
ω1/2π, GHz 75.5 260 57 36.6
χ, V/pC/m 18 18 28 25
µ, 106 s−1 7.5 2.5 18 22
ncr, 1010 cm−1 13 140 3 0.8
µ/(ηω1δ0) 15 1.2 84 50

in a real lattice the instability would develop with a growth
rate smaller than in an ideal toroid. A study of this case
will be published in a separate paper.
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