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Abstract

The ion-electron two-stream instability is studied numer-
ically for the high intensity heavy ion beams envisioned in
the Integrated Beam Experiment (IBX). We consider a 1.7
MeV K+ beam with 0.25 microcoulombs/m line density
propagating through a small background electron popula-
tion. The detailed linear properties of the ion-electron two-
stream instability are studied using a 3D low-noise delta-f
particle simulation method implemented in the Beam Equi-
librium, Stability and Transport (BEST) code.

INTRODUCTION

In typical linear induction accelerators for heavy ion fu-
sion drivers, the beam current is much higher than that in
contemporary accelerators and storage rings in order to ob-
tain sufficient fusion energy gain. For a given focusing
lattice, most designs of heavy ion fusion drivers operate
near the space-charge limit. Large space-charge forces in-
evitably induce a strong interaction among the beam parti-
cles, and in some regimes can result in collective instabil-
ities [1, 2]. One of the major objectives in the Integrated
Beam Experiment (IBX) proposed by the U.S. Heavy Ion
Fusion Virtual National Laboratory is to study collective
effects in a space-charge-dominated beam [3]. In particu-
lar, it is proposed to use IBX to investigate the ion-electron
two-stream instability, which has been observed experi-
mentally in high intensity accelerators and storage rings
[4–6]. A well-documented example is the electron-proton
(e-p) instability observed in the Proton Storage Ring exper-
iment [4, 5]. Theoretical studies [1, 7–15] suggest that the
relative streaming motion of the high-intensity beam parti-
cles through a background charge species provides the free
energy to drive the classical two-stream instability, appro-
priately modified to include the effects of dc space charge,
relativistic kinematics, presence of a conducting wall, etc.
A background population of electrons can result by sec-
ondary emission when energetic beam ions strike the cham-
ber wall [16–18], or through ionization of background neu-
tral gas by the beam ions.

When electrons are present, two-stream interactions in
IBX are expected to be stronger than the two-stream in-
stabilities observed so far in proton machines because of
the much larger beam intensity. In this paper, we study
the ion-electron two-stream instability in IBX using a per-
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turbative particle simulation method (δf method) for solv-
ing the Vlasov-Maxwell equations. As a low-noise nonlin-
ear particle simulation technique, the δf method has been
implemented in the recently developed Beam Equilibrium,
Stability and Transport (BEST) code [19–21], which has
been applied to a wide range of important collective pro-
cesses in intense beams. We consider a K+ IBX beam
with m = 39.1au and kinetic energy 1.72 MeV in the low
energy regime. Other beam parameters are: line density
N = 1.50×1012/ m; RMS radius Rb = 1.3 cm; and beam
transverse thermal speed vth = 0.054βbc. For the focusing
lattice, the vacuum phase advance is σv = 72◦, and the
applied betatron frequency is ωβb = 1.21× 107 s−1 .

δF SIMULATION METHOD
The theoretical model employed here is based on the

nonlinear Vlasov-Maxwell equations. We consider a thin,
continuous, high-intensity ion beam (j = b), with char-
acteristic radius rb propagating in the z-direction through
background electrons (j = e), with each component de-
scribed by a distribution function f j(x, p, t) [1, 7]. The
nonlinear Vlasov-Maxwell equations for fj(x, p, t) and the
self-generated fields can be approximated by [1,7]
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To solve the Vlasov-Maxwell equations, we use a low-
noise δf method [19–21], where the total distribution func-
tion is divided into two parts, f j = fj0 + δfj . Here, ωβj

is the applied smooth-focusing frequency, fj0 is a known
equilibrium solution (∂/∂t = 0) to the nonlinear Vlasov-
Maxwell equations (1) and (2), and the numerical simula-
tion is carried out to determine the detailed nonlinear evo-
lution of the perturbed distribution function δf j . This is
accomplished by advancing the weight function defined by
wj ≡ δfj/fj , together with the particles’ positions and
momenta. The dynamical equations for wji is given by [21]
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Figure 1: Normalized equilibrium beam ion and back-
ground electron density profiles.

where the subscript “ji” labels the i’th simulation particle
of the j’th species, δφ = φ − φ0, and δAz = Az − Az0.
Here, the equilibrium solutions (φ0, Az0, fj0 ) solve the
steady-state Vlasov-Maxwell equations (1) and (2). A de-
tailed description of the nonlinear δf method can be found
in Ref. [21].

SIMULATION RESULTS

In the present simulations of the two-stream instability,
instead of using the theoretically-convenient KV distribu-
tion [1], we assume that the background equilibrium distri-
bution (∂/∂t = 0) is the more realistic bi-Maxwellian dis-
tribution with temperature Tj⊥ = const. in the transverse
plane, and temperature Tj‖ = const. in the longitudinal
direction. That is,

fj0(r, p) =
n̂j

(2πmj)3/2γ
5/2
j Tj⊥T

1/2
j‖

(4)

× exp

{
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2
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}
,

where n̂j is the density on axis (r = 0) of the j’th species,
and φ0 and Az0 are the equilibrium self-field potentials,
determined self-consistently from the nonlinear Maxwell
equations

1
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The equilibrium density profile for the each species,
n0

j (r)/n̂j = (1/n̂j)
∫

d3pfj0(r, p, t) (j = b, e), can be
readily obtained once the equilibrium potentials φ 0 and
Az0 are determined numerically from Eqs. (4) and (5).
If the beam particles are the only species in the system,

Figure 2: The x-y projection (at fixed value of z) of the per-
turbed electrostatic potential δφ(x, y, t) for the ion-electron
two-stream instability growing from a small initial pertur-
bation, shown at (a) t = 0, and (b) ωβbt = 6.6.

the equilibrium can be be characterized by a single di-
mensionless parameter sb ≡ ω̂2

pb/2γ2
b ω2

βb, where ω̂2
pb =

4πn̂be
2
b/mbγb is the beam plasma frequency on axis. The

parameter sb, which measures the self-field intensity rela-
tive to the applied focusing force, satisfies 0 ≤ sb ≤ 1,
with sb = 0 corresponding to the zero space-charge limit,
and sb → 1 to the space-charge-dominated limit. For IBX,
we take sb = 0.996, and the density profile is close to a
flat-top profile, because sb is very close to the space-charge
dorminated limit. If there is a small background electron
population, the space-charge force will be partially neutral-
ized, and the beam density profile relaxes to a bell-shape.
Plotted in Fig. 1 are the density profiles for an ion-electron
two-species equilibrium with fractional charge neutraliza-
tion f ≡ n̂e/n̂b = 0.05, and Ve = 0 and ωβe = 0 for
stationary background electrons.

To simulate the ion-electron two-stream instability , we
perturb the two-species equilibrium discussed above with
a small initial perturbation, and use the linearized version
of the BEST code to simulate the dynamics of the system
for many thousands of wave periods. In Fig. 2, the x − y
projection of the perturbed potential δφ at a fixed longitu-
dinal position is plotted at t = 0 and t = 6.6/ωβb. Clearly,
δφ grows to a moderate amplitude by t = 6.6/ωβb, and
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Figure 3: Time history of pertubed desnity δn b/n̂b at a
fixed spatial location.

the l = 1 dipole mode is the dominant unstable mode, for
which the growth rate is measured to be Imω = 0.42ωβb.
Plotted in Fig. 3 is the time history of the beam density per-
turbation at one spatial location. Evidently, after an ini-
tial transition period, the perturbation grows exponentially,
which is the expected behavior of an instability during the
linear growth phase.

In the simulation results for the two-stream instability
presented above, we have assumed initially cold beam ions
in the longitudinal direction (∆p b‖/pb‖ = 0) to maximize
the growth rate of the instability. Here, pb‖ = γbmbVb.
In general, when the longitudinal momentum spread of the
beam ions is finite, Landau damping by parallel ion kinetic
effects provides a mechanism that reduces the growth rate.
Shown in Fig. 4 is a plot of the maximum linear growth rate
(Imω)max versus the normalized initial axial momentum
spread ∆pb‖/pb‖ obtained in the numerical simulations for
the cases where f ≡ n̂e/n̂b = 5% and f = 2.5%. As
evident from Fig. 4, the growth rate decreases dramatically
as ∆pb‖/pb‖ is increased. When ∆pb‖/pb‖ is high enough,
the mode is completely stabilized by longitudinal Landau
damping effects by the beam ions. This result agrees qual-
itatively with theoretical predications [9]. For a fixed value
of ∆pb‖/pb‖, the growth rate obtained from the simulation
is several times smaller than the theoretical value predicted
by the dispersion relation derived for a KV beam with flat-
top density profile [7, 8]. This difference can be attributed
to the fact that the present simulations are carried out for
more realistic thermal equilibrium beams with bell-shape
density profiles. The nonlinear space-charge potential due
to the bell-shape density profiles induces substantial tune
spread in the transverse direction, which provides an addi-
tional damping mechanism, and reduces the growth rate of
the two-stream instability [20].
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