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Abstract

In a recent theoretical study of the transverse electron-
proton (e-p) instability, an asymptotic solution has been
found for the equations describing the centroid motion
of the traversing proton bunch and the stationary back-
ground electrons.[1] It was shown that the combination of
finite proton bunch length, non-uniform proton line den-
sity, and the single-pass e-p interaction cause the instabil-
ity to evolve intricately in space and time even in the linear
regime. This paper reports a numerical study of the e-p
instability based on the same centroid equations. The pur-
pose of the work is to compare the numerical solution with
the analytic solution and to use the numerical approach
to investigate the early development of the instability not
covered by the asymptotic solution. In particular, the in-
stability threshold and the initial growth of the instability
are studied for various proton-beam conditions, fraction of
charge neutralization, and initial perturbations.

INTRODUCTION

In recent years, there has been a growing interest in
studying the transverse electron-proton (e-p) two-stream
instability in intense proton beams. One of the focuses is
on the e-p instability observed in the long proton bunch like
the one in the Proton Storage Ring (PSR) at Los Alamos
National Laboratory [2]. Although the basic mechanism
of the instability has been well known, the theory for a
bunched beam e-p instability is still under developing. In
a recent theoretical study of transverse e-p instability, an
asymptotic solution has been found for the equations de-
scribing the centroid motion of the traversing proton bunch
and the stationary background electrons.[1] The growth
rate and the stability threshold were estimated based on
the asymptotic solution. As discussed in Ref. 1, the re-
sults derived from this kind of approach are applicable to
special cases only. The initial evolution of the perturba-
tions and the instability threshold still need more investiga-
tion. The work reported in this paper is a numerical study
based on the centroid equations discussed in Ref. 1. We
will compare the numerical results with the analytic solu-
tion and study the early development of perturbations in the
proton bunch by investigating various proton-beam condi-
tions, fraction of charge neutralization, and initial condi-
tions. Since the numerical approach inevitably lacks gen-
erality, the intention here is to extract some qualitative un-
derstanding in a limited parameter space only.
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CENTROID MODEL

We consider a bunched proton beam of full length L and
circular cross section of radius a, propagating with a con-
stant velocity v through a stationary electron background
of infinite extent in the direction of beam propagation. The
protons are confined in the transverse direction by a linear
external focusing force. We assume that in the equilibrium
state, particles are distributed uniformly in the transverse
direction and the electrons experience a linear transverse
focusing force due to the space charge of the proton bunch.
A Cartesian coordinate system is chosen such that the z
axis is pointing opposite to the direction of proton propa-
gation, and the origin coincides with the center of the beam
cross section. The line densities of the protons and elec-
trons, λp and λe, generally depend on z. The synchrotron
motion of the protons and the axial motion of the electrons
in the laboratory frame are neglected for simplicity. We
also neglect the impedance due to the beam environment,
and consider the transverse motion in only one direction,
say the y direction. The stability study is based on a model
in which each electron interacts with the proton beam only
once, i.e., a “one-pass” interaction between the electrons
and protons.

The centroid of the proton beam Yp(z, t) and the centroid
of electrons Ye(z, t) are defined by

Yq(z, t) =
∫ ∞

−∞
yq(z, t, ωq)Fq(ωq)d(ωq/∆q) , (1)

where the subscripts q stands for p (protons) or e (elec-
trons), yq(z, t, ωq) is the particle displacement at the posi-
tion z and time t, ωq is the oscillation frequency, Fq(ωq) is
the frequency distribution function, and ∆q characterizes
the frequency spread of ωq. We consider a Lorentzian dis-
tribution function Fq(ωq) = (∆2

q/π)[∆2
q +(ωq −ωqo)2]−1,

where ωqo is the mean value of ωq. Averaging over the
equations of single particle motion yields

D2Yp + 2∆pDYp + (ω2
β + ∆2

p)Yp = ω2
βξ(z)Ye , (2)

and
Ÿe + 2∆eẎe + [Ω2(z) + ∆2

e]Ye = Ω2(z)Yp , (3)

where D = ∂/∂t − v(∂/∂z), and ωβ is the undepressed
betatron frequency, ξ(z) = 2rpc

2λe(z)/(a2ω2
βγ), Ω(z) =

(c/a)
√

2reλp(z), is the electron bounce frequency, c is the
speed of light, γ = (1 − v2/c2)−1/2; rp and re are the
classical radii of a proton and an electron, respectively. In
deriving Eqs. (2) and (3), we have also assumed that the
incoherent betatron frequency shift due to the self-fields of
the proton beam is negligible, and that the maximal value of
λe is much smaller than that of λp, so that ωpo = ωβ . The
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perturbing forces are assumed to be meΩ2(z)Yp for elec-
trons and mpω

2
βξ(z)Ye for protons, where mq is the rela-

tivistic mass of a proton or an electron. Note that Eqs. (2)
and (3) depend on the choice of the frequency distribution
functions.

An approximate asymptotic solution for Eqs. (2) and (3)
in the beam frame is found to be

Yp(z′, t) ≈ CpMp(z′) e−∆pt

{[
I1(u)

u
− J 2I2(u)

8u2

]

× cos Tp −
[
J1(u)

u
− J 2J2(u)

8u2

]
cos Sp

}
, (4)

where z′ is the distance from the head of the proton bunch,
Jn(x) and In(x) are Bessel functions, u =

√
2θJ , θ =

θ(z′, t) = ωβ(t−z′/v), Mp(z′) =J ξ(z′)R(z′) exp
[
(∆p−

∆e)z′/v
]
, Tp = P−θ, Sp = P+θ, P = σp+Θ(z′)−J /4,

Cp and σp are constants, R(z′) and Θ(z′) are determined
by Φ(x) = R(x)eiΘ(x) and Ψ(x) = R(x)e−iΘ(x),

J = J (z′) = i

∫ z′/v

0

Ω2(x)ξ(vx)
W (x)

[R(x)]2dx , (5)

i =
√
−1, Φ(x) and Ψ(x) are the linearly independent so-

lutions of the equation d2Y/dx2+Ω2(x)Y = 0, and W (x)
is the Wronskian of Φ(x) and Ψ(x). In deriving Eq. (4),
we have assumed that Ye = dYe/dt = 0 for z′ ≤ 0. The
solution for Ye is very similar to Eq. (4). The growth (or
damping) rate Γp(z′, t), and the stability threshold of the
proton motion (∆p)t, can be estimated from Eq. (4) as

Γp(z′, t) ≈ −∆p +
ωβJ

[
8uI2(u) − J 2I3(u)

]
u
[
8uI1(u) − J 2I2(u)

] , (6)

and

(∆p)t ≈ Max
[
ωβJ

4

(
1 − J 2/48
1 − J 2/32

)]
, (7)

where [Yp(z′, t)]a denotes the amplitude of Yp(z′, t), and
Max[f(z′)] indicates the maximum of f(z′). For u � 1,
we have Γq(z′, t) ≈ ωβ

√
J /(2θ)−∆p. Typically, J < 1

for a small fractional charge neutralization, Γp(z′, t) is a
monotonically decreasing function of time, and the highest
growth rate occurs at the tail of the proton bunch. Eqs. (6)
and (7) are valid only when the centroid motion can be de-
scribed by the asymptotic solution given in Eq. (4).

NUMERICAL STUDY

The study here is based on the numerically solution of
Eqs. (2) and (3). Earlier numerical studies as well as simu-
lations using the similar equations, including the variations
that cover multi-electrons and electron production, have
yielded reasonable agreement with experimental data.[3,4]

Comparison between numerical results at large time
and the asymptotic solution given in Eq. (4) shows good
qualitative agreements: the growth rate depends linearly
on ∆p as a consequence of choosing the Lorentzian fre-
quency spreads, the perturbation wavelength along the pro-
ton bunch is roughly proportional to the square root of the

proton line density, and the damping of instability in the
long time as described in the analytic solution. At large t,
the numerical solutions show that the growth or the damp-
ing rate depends weakly on ∆e.

Our main interest is to investigate the initial evolution
of perturbations. The following is a summary of general
characteristics observed in the numerical solutions:

(i) The initial growth or damping rate does depend on ∆e.
The dependence diminishes as time increases. This result
is not covered by the asymptotic solution in Eq. (4).

(ii) The dependence of the growth rate on ∆p is not affected
by the initial conditions.

(iii) Since the growth rate given in Eq. (6) is a local quan-
tity, and because we are considering the one-pass interac-
tion between the electrons and the protons, initial pertur-
bations with quarter wavelength comparable to the bunch
length have strong influence on the initial growth rate. Fur-
ther, the growth rate at any location is not affected by
the perturbations behind. Typically, constant-amplitude
(or constant-envelope) sinusoidal perturbations with wave-
length substantially smaller than the bunch length are ini-
tially damped at a rate near ∆p. For similar perturbations
having tilted envelope, the initial damping rate is shifted
from ∆p by certain amounts with a sign opposite to that
of envelope’s slope. The initial slope of the damping rate
also shows the same kind of dependence on the envelope of
initial perturbations.

(iv) In the beginning, there is a transient period before the
centroid motion, and hence the growth rate, is evolved into
the asymptotic regime. During this transient period, the
evolution of the growth rate depends on the density profile
and other parameters in a complicated way, e.g. the growth
rate may oscillate. The system stability can not be judged
base on the momentary sign of the growth rate.

(v) The length of the transient period for the growth rate to
evolve into the asymptotic regime appears to be indepen-
dent of ∆p. Variations of other parameter values, like the
fraction of neutralization, that make the system less stable
tend to shorten the transient period.

(vi) The initial growth rate estimated in Eq. (6) is usually
much higher than the simulation results. Estimates of sta-
bility threshold made by using Eq. (7) appear to be too con-
servative in general.

As an example, we focus our study here on a few spe-
cific density profiles and initial conditions with ∆p and
proton intensity chosen near the stability threshold. Thus,
we consider a constant λe and four types of λp: constant,
elliptical, parabolic, and quartic (parabolic squared). Four
initial perturbations on the proton centroid are investigated:
wavelength proportional to

√
λp , noise, 100 MHz, and 250

MHz. All four initial perturbations have a same constant
envelope. The electron centroid was assumed to be unper-
turbed when entering the proton bunch. The following PSR
parameter values were used for computation: γ = 1.85,
a = 1.5 cm, the circumference C = 90 m, 2.74 × 1013
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protons per bunch, ωβ = 40 MHz, and L/v = 200 ns (for a
short bunch). We assume ∆p = 0.125%ωβ , ∆e = 1.25ωβ ,
and a flat amount of electrons corresponding to a 2% of
charge neutralization in the case of constant proton line
density. For the four types of λp considered here, the peak
electron bounce frequency in the proton bunch is between
100 MHz and 200 MHz.
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Figure 1: The growth rate at the tail of the proton bunch
as a function of the turn number in PSR for different ini-
tial conditions and the growth rate computed using Eq. (6).
Parabolic proton line density is considered here.
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Figure 2: The amplitude of oscillation for the proton cen-
troid is shown as a function of the turn number in PSR for
the cases considered in Fig. 1. The ordinate has an arbitrary
unit.

Shown in Fig. 1 is the growth rate at the tail of the pro-
ton bunch as a function of the turn number in PSR for dif-
ferent initial conditions and parabolic proton line density.
The growth rate computed using Eq. (6) is also shown for
comparison. The corresponding amplitude of proton cen-
troid oscillation is shown in Fig. 2. Figure 3 shows the
growth rate at the tail of the proton bunch as a function
of the turn number for different proton line densities and a
same noise initial condition. It is seen that the initial per-
turbation with wavelength proportional to

√
λp is the least

stable one among the four initial conditions considered.
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Figure 3: The growth rate at the tail of the proton bunch as
a function of the turn number in PSR for different proton
line densities and a same noise initial condition.

CONCLUSIONS

We have carried out a numerical study of the transverse
e-p instability using the centroid equations derived from
Lorentzian distribution of particles’ oscillation frequencies
and the model of one-pass interaction between the station-
ary electrons and traveling proton bunch. Numerical re-
sults were compared with the asymptotic solution. Good
qualitative agreements were found when the initial pertur-
bation in the numerical solution is evolved into the asymp-
totic regime at large time. The initial evolution of perturba-
tions was investigated for various proton line densities and
initial conditions of the proton bunch. Some qualitative un-
derstanding has been acquired from these numerical solu-
tions. Notably, we found that the asymptotic solution tend
to overestimate the growth rate and the frequency spread
of proton oscillation required for stability in general. Thus,
unlike the situation in analyzing a usual beam stability, the
extrapolation of the growth rate from the asymptotic regime
to the initial state is much more restricted for the e-p in-
stability in a bunched beam of non-uniform line density.
We also found that the perturbations with frequency below
the peak electron bounce frequency have stronger influence
on the initial growth rate than the high-frequency perturba-
tions.
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