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Abstract

Stable, coherent, longitudinal oscillations have been
observed in the RHIC accelerator. Within the context
of pertubation theory, the beam parameters and machine
impedance suggest these oscillations should be Landau
damped. When nonlinear effects are included, long
lived, stable oscillations become possible for low intensity
beams. Simulations and theory are compared with data.

INTRODUCTION

Solitary waves in the form of notches or hotspots have
been observed in coasting beams and the theory of solitary
waves in plasmas [1] and coasting beams have been dis-
cussed in [2, 3, 4, 5, 6]. As an introduction we will use a
very simple model due to Sacherer[7]. Consider a coasting
beam with a phase space density that is piecewise constant.
Figure 1 shows a simple picture in the frame comoving with
the soliton, where the phase space density is either 0, f0, or
f0 + f1; and the distribution is independent of time. We
use x as the longitudinal coordinate and p = dx/dt. The
coasting beam Hamiltonian is

H = p2/2 + �/2
∫

dpf(p, x)

where � is negative for a focusing impedance. Since the
phase space density is constant on contours of constant H
one obtains algebraic equations, H(x = 0, p = p1) =
H(x = L, p = 0) and H(x = 0, p = p0 + p2) = H(x =
L, p = p0). While Sacherer resorted to numerical methods
these equations are straightforward if one assumes p1 � p0

which results in

p1 ≈ −2�f1

1 + �f0/p0

.

If the correction term �f0/p0 is set to zero, the condition
is identical to that for a phase space density of f1 to self
bunch. The change in the line density due to soliton is ≈
−p2

1/�. For an inductive impedance above transition � > 0
and one observes a notch, or hole in a wall current monitor
(WCM) signal.
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Figure 1: Simple picture of a soliton in a coasting beam.
The horizontal axis is x, the longitudinal position within
the bunch. The vertical axis is p = dx/dt.

DATA

Long lived coherence has been observed in the SPS[8],
the Tevatron[9], and now the RHIC. Figure 2 shows a
mountain range plot of the WCM for freshly injected pro-
tons with γ = 25.9. The amplitude of the coherent oscilla-
tion increased steadily, and Figure 3 shows the same bunch,
still at injection energy, 17 minutes later. Figures 4 and 5
show different bunches at flattop with γ = 107. In all the
cases shown, only the 28 MHz accelerating cavities were
operating and the total acquisition time was 4000 turns
≈ 50 milliseconds. RHIC’s transition energy is γT = 23.8,
so all the data are above transition. All the data show
a coherent oscillation which corresponds to a region of
overdensity, or hot spot, in the longitudinal phase space.
This behavior is commonplace in RHIC and we have never
observed a stable hole. Measurements of RHIC’s broad
band impedance[10] give Z/n = j(3 ± 1)Ω for the in-
ductive wall contribution. The longitudinal space charge
impedance at γ = 25.9 is Z/n = j1.3Ω and the space
charge impedance becomes negligible at store. Therefore,
we see hotspots with a defocusing impedance, which is just
the reverse of what one expects for coasting beams.

THEORY

Attempts to understand the “dancing bunches” in the
Tevatron[9] are based on the linearized theory of coherent
instabilities[11]. The main idea is that the coherent tune
shift due to the broad band impedance is larger than the
synchrotron tune spread. This results in undamped coher-
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ent modes. If this was the case in RHIC, the data shown in
Figure 5 would require many modes and one would expect
to see all kinds of coherent oscillations for different bunch
lengths and intensities. We always see one, perhaps two,
hotspots. In the rest of this section we develop an alternate
theory which yields stable, long lived hotspots[12].

Let φ denote the position of a particle in the bunch, mea-
sured in units of RF radians; ωs,0 denote the small am-
plitude angular synchrotron frequency; and use s = ωs,0t
as the evolution variable. Let ρ(φ, s) be the normalized
line density of the particles so that

∫
dφρ(φ, s) = 1. Take

a simple broad band impedance model Z = jωL. Let
V (φ) = Vrf sin φ be the RF voltage and let ωrf be the an-
gular RF frequency. Note that our definitions give Vrf > 0
below transition and Vrf < 0 above transiton. Let Q de-
note the total charge within the bunch. Then the equation
of motion for φ is

d2φ

ds2 + sin φ =
LQω2

rf

Vrf

∂ρ(φ, s)
∂φ

, (1)

To simplify notation set � = −LQω2
rf/Vrf . For a steady

state, matched bunch, a positive value of � defocuses the
beam and leads to an incoherent synchrotron frequency that
is less than the synchrotron frequency for � = 0. We have
done multi-particle drift-kick simulations and have verified
that equation (1) creates high density solitons for � > 0.

Equation (1) describes a Hamiltonian system, and we
make a canonical transformation to the action angle vari-
ables for a simple harmonic oscillator J and Ψ. We make
the ansatz that the phase space density undergoes a rigid
rotation f(J,Ψ, s) = g(J,Ψ − (1 − β)s) where the co-
herent frequency of the soliton is ωc = (1 − β)ωs,0. The
Hamiltonian is then phase averaged over s resulting in

K = βJ + α(J) + V (J,Ψ), (2)

where α(J) ≈ −J2/16, generates detuning with syn-
chrotron action and the coherent forces are generated by

V (J,Ψ) =
�

π

∫
g(J1,Ψ1)dΨ1dJ1√

2J + 2J1 − 4
√

JJ1 cos(Ψ − Ψ1)
.

(3)
The Vlasov equation is

∂K

∂J

∂g

∂Ψ
− ∂K

∂Ψ
∂g

∂J
= 0, (4)

The simplest solutions of equation (4) are of the form
g(J,Ψ) = G(K(J,Ψ)), without regard to separatricies.
Both analytic and numerical solutions have been ob-
tained. It is easiest to switch to Cartesian variables A =√

2J sin Ψ, B =
√

2J cos Ψ. The analytic work relies on
approximating the unperturbed Hamiltonian K0 = βJ +
α(J) ≈ K̂ − λ(A − A0)2 where A = A0, B = 0 is the
center of the soliton; and λ ≈ A2

0/16 . Consider a phase
space density of the form

g(A,B) =
3

2πab

√
1 − (A − A0)2/a2 − B2/b2 (5)
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Figure 2: WCM data for a freshly injected bunch

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10

W
C

M

time (ns)

Figure 3: WCM data at injection for the same bunch as in
Figure 2, but 17 minutes later.
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Figure 4: WCM data for a bunch at the beginning of flattop
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Figure 5: WCM data for a different bunch at flattop.

where a and b are the half widths of an ellipse and the
solution is zero outside this ellipse. With this density
∂V/∂A = CA(A − A0) and ∂V/∂B = CBB, for points
inside the ellipse. When combined with the previous ap-
proximation, the Vlasov equation is solved if

a2(CA − 2λ) = b2CB . (6)

Letting r = a/b one finds that 0 ≤ r < 1 and

a3λ

�
=

∞∑
n=0

[
(2n − 1)!!

2nn!

]2

(1 − r2)n

[
3r

4
− 3nr3

1 − r2

]
,

(7)
≡ R(r) ≈ −0.464r ln r − 0.285r(1 − r) (8)

where (−1)!! ≡ 1, 0 ≤ R ≤ 0.10, and the fractional error
of the approximate expression is ≤ 5%. Positive values of �
are needed for self bunching. Also, since a < b, the peak of
the line density is largest when the soliton is farthest from
the bunch center, as in Figure3.

We have also done iterative solutions. We search for
solutions of the form g(A,B) = G(K(A,B)). Start
by choosing a value of β and take an initial distribution
g0(A,B). Iterate using gn+1(A,B) = G(K0(A,B) +
Vn(A,B)), where Vn(A,B) is calculated using equa-
tion (3) with gn. Figures 6 and 7 show solutions for
G(K) = C0θ(K − K0)

√
K − K0 which is the same as

was used for the analytic solution.
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Figure 6: Values of the distribution taken through the line
containing the coordinate origin and the peak of the soliton,
during the interative solution.
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Figure 7: Final solution after 10 iterations.
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