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Abstract

We develop an analytic solution for the electromagnetic
field in the toroidal region region between the liner and the
vacuum chamber in LHC-like rings.

INTRODUCTION

In a closed ring machine, the region between the exter-
nal wall of the liner and the internal wall of the surrond-
ing vacuum chamber is a toroidal resonator. In the steady
regime, the particle bunches circulating in the liner set up
stationary field in the toroidal region through the pumping
holes. In this paper we outline the procedure for deriving
a full analytic solution for the field in the toroidal region,
for a multibunch beam. We consider the simplest case of a
ring of (axial) lengthL with circular cross section liner and
vacuum chamber. The (external) radius of the liner and the
(internal) radius of the vacuum chamber will be denoted as
a andb, respectively.

TEM FIELDS IN A TOROIDAL
RESONATOR

Under usual conditions, the spectral content of the circu-
lating bunch current is well below the lowest higher order
TE and TM cutoff frequency of the coaxial region between
the linear and the vacuum chamber. The time-harmonic
TEM fields in the toroidal region can be accordingly writ-
ten (phasor notation,exp(jωt) time factor dropped):
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wherek0 = 2π/L, and the (complex) constantsVm, Vm,
Im andIm having the dimensions of voltages and currents,
respectively, are to be determined. The basis ”fields” in (1)
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wherek0 = ω0/c, describe free-field oscillations with an-
gular frequencyω = nω0, ω0 = 2π/T , T = L/c being the
light round-trip time. They satisfy the following conditions

{
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n = 0
at z = 0, L, (5)

and earn the following orthogonality properties:
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Moreover,∀n
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whereV and∂V are the coax ring volume and its (com-
plete) boundary, consisting of the outer surface of the liner
(r = a) and inner surface of the vacuum chamber(r = b).

The unknown constantsVm, Vm, Im, Im can be deter-
mined in terms of the source terms, represented by Bethe
equivalent electric and magnetic dipoles sitting at the holes
connecting the beam pipe to the vacuum chamber, dis-
cussed in the next section. The fields (1) obey Maxwell
equations:
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(8)

We dot-multiply the first equation in (8) by�H(i)
n , (i = e, h),

use the obvious vector identity,∇ · (�a ×�b) = ∇× �a ·�b −
�a · ∇ ×�b, together with equations (4), and the Leontóvich
boundary conditions:
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n̂ being the outward unit vector normal to∂V , andZwall =
(ωµ0/2σ)1/2 the appropriate wall impedance. Hence(i =
e, h):
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whence, using eq.s (1), and (6), (7),
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are the TEM propagation and attenuation constant in the
toroidal region.

Similarly, we dot-multiply the second equation in (8) by
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From (11) and (15) we finally get:
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THE HOLE COUPLING

In the frame of Bethe’s approximation [1], the electro-
magnetic coupling between the beam field in the liner and
the toroidal region through the pumping holes (assumed
identical) can be described by the (spectral) source terms
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whereαe andαm are the hole electric and magnetic po-
larizabilities [1], �Ei, �Hi is the (spectral mate of) the beam
field in the liner, discussed in the next section, and{�rp} are
the holes positions. These are the source terms in (8), (12)
and (16). Note that in view of the azimuthal invariance of
the basis fields in (12) and (16), the azimuthal coordinates
of the holes are irrelevant, and can be set to zero. Hence

�rp = aûr + zpûz (19)

where, for regularly spaced holeszp = pΛ, Λ being the
hole spacing.

BUNCHED BEAM FIELD IN LINER

The charge density of aNb equispaced point-like
bunches of equal chargeQ circulating on axis along a ring-
liner can be written:

ρ(�r, t) = δ(r)δ(z − βct mod (L/Nb)). (20)

The corresponding field can be written:
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are the bunch circulation time, (angular) frequency and
wavenumber, and we used the Fourier representation of the
periodicδ-function.

Real world bunches can be better described by a gaussian
charge distribution, viz.:
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f(z) = (2π)−1/2σ−1 e−z2/2σ2
, (23)

where∗ denotes convolution,σ is the r.m.s. bunch-length,
and we assume thatL/Nb � σ. Hence1
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1Equation follows taking thez → k Fourier transform of eq. (23),
using Borel theorem, and then switching back to thez−domain
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where:
F (k) = π1/2e−σ2k2/2 (25)

is the Fourier transform of the gaussian distribution.
This field is a superposition of time-harmonic forward

(counterclockwise) propagating waves, atω = mNbωb,
with complex (phasor) representation:

�Ei,m =
F (mNbkb)
1 + δm0

NbQ

πε0L

�ur

r
e−jmNbkbz, (26)

δhk being the Kronecker function.

CONCLUSIONS

We outlined a general framework for computing the
fields in the toroidal region between the liner and the vac-
uum chamber in ring machines. The main relevant quanti-
ties of interest (peak field amplitudes, parasitic losses) can
be accordingly readily computed. Numerical results per-
tinent to LHC will be reported elsewhere. It can be an-
ticipated that these are possibly more accurate than those
obtained either for the case of an infinite straight structure
[2], or from an impedance boundary condition at the liner’s
wall which takes consistently into account the presence of
the hole-coupled co-axial vacuum chamber [3]. This work
has been sponsored in part by INFN.
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