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Abstract proximation with respect to the existence of the equilib-
rium longitudinal distribution of electrons in circular ac-

_The eqU|I|br_|um b_unch length in electron _storage MN9%elerators in the case of a purely inductive localized wake
with a purely inductive localized wake function has bee'?unction

studied, assuming the Gaussian approximation of the dis-
tribution function in phase space. The localized wake
describes more general cases, even uniformly distributed THE MOMENT MAPPING
wakes, described by the Haissinski equation. The com- The lonaitudinal b q ics in elect ‘
parison of our results with those obtained from Haissinski € longitudinal beam dynamics in electron storage

equation shows good agreement and helps understand[ Sf can pe (Ijescntt_)eld ?_y the s.tochastt[c equelm?n(sj of-mo-
the validity of the Gaussian approximation. Ioh fora single particie (Langevin equations). Introducing
the canonical variables:

INTRODUCTION o = longitudinal dlsplacemer,n
natural bunch length

The wake force describes the electromagnetic interac-
tion between particles and environment and affects the par- relative energy spread
ticles distribution in a bunch. In the conventional analytic T2 = natural energy spread
approach one assumes that the source of the wake force ) ) )
is uniformly distributed along the ring, and the equilib-2d integrating the Langevin equations over one turn, we
rium bunch distribution at low current is a solution of the®Ptain the following stochastic mapping:
Haissinski equation, the so-called Potential Well Distor- / .
tion (PWD) equation. A linear stability analysis around ( 1 > —U < . L > ,
this static solution gives the threshold for turbulent bunch L2 Azy + V1 = A? = ¢(1)
lengthening. Obviously this method tells us very little . ., .
about the behavior of the unstable solutions. On the othéfhereX’ = (z,z,) is X = (z1,z2) after one turn. Here
hand it is more realistic for large machines to consider the is the rotation matrix:
many sources of wake fields along the ring as localized .
objects, as usually assumed in the Multi-Particle Tracking U= ( Cosfr - SuLp ) , Q)
(MPT) codes. TS cosp

In a previous paper [1], the authors studied an analiti-

calkmc;del which mgorpti]ratgfs Lhe_tlmel (?jgpta_gde_ncef of t ‘?cp(—Q/T), T being the synchrotron damping time mea-
wake force, assuming that It the initial distribution TunC-g, .o jn units of the revolution periofljs a Gaussian ran-

tion in synchrotron phase space is Gaussian, it can still l?)%m variable with< # >— 0 and< 72 >— 1. The wake
approximated by a Gaussian after the effect of the Wal?%rcegz)(xl) is represented by: '

force, represented as a ’kick’. The distribution function
can be accordingly always represented by its only first and Qror [
second order moments, describing the beam envelope in $e1) = / p(z —w)W(u)du. 2
synchrotron phase space. The evolution of these moments 00 Jo
from turn to turn can be obtained by applying a non linwhere E; is the nominal beam energy, is the nominal
ear mapping at each turn. The equilibrium buch length calative energy spread{E, is the natural energy spread),
have stable solutions with period-one fixed points as well 3% (z) is the wake potential and(z) is the charge den-
multistable states or a cusp-catastrophe behavior, depergty normalized to one. Note that synchrotron oscilla-
ing on the parameters values. The results obtained in [fibns have been linearized, and radiation is localized at
show a good agreement with those obtained from MPT. one point of the ring [3]. The above stochastic mapping
The localized wake can be extended to more gener equivalent to an infinite hierarchy of deterministic map-
cases, even to uniformly distributed wakes, described lpings in the following statistical quantities; =< x; >,
the Haissinski equation. To do so one should introduce thg; =< (z; — z;)(z; — Z;) >, and so on, which are the
superperiodicityV, and let it grow to infinity. moments of the distribution functios(Z), < * > indi-
In this paper we study the validity of the Gaussian apeating an average over all particles. Our main assumption

= 2mv,, vs being the synchrotron tunep =
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is that the distribution function in phase space is always a

Gaussian, even in the presence of a wake force: .
Donay) = S0 @ w) s — ) o o |
h om/deto ' \
[N

We consider a purely inductive wake function 6 | "
W (z) = bd' () ) T ﬁ
. . . 4 S
and split the mapping for the second order moments into L AN
three parts, representing the effect of radiation, wake-force :______---v‘.c:
and synchrotron oscillation, as it follows: 2+
radiation: i l . . :
/ _ —40. -30. -20. -10. 0.
011 = 011 b
0'/12 = AO'12
0'/22 = A20’22 + (1 — A2), (5)
1L F
wake force:
0'/11 = 011 08 ;
! + b [
g = O R — i
12 2y Jmon os |
b012 b2 ou i
Oby = 099+ + 6
2 2 2onymon | 60313 ©)
synchrotron oscillation:
2
ol = Z UinonkUj;. (7) .
h,k=1 X

The stability of the system depends on the values of the
synchrotron tune,, the damping time (measured in nUM-Figure 1: 04, versush for T' = 30, v, = 0.085 and with
ber of turns)7y and the strength of the wake forde (top) Ng = 1 and (bottom)Vg = 150.

We studied a wide range of parameters values and found
stable solution of period-one and period-two, multi-stable
states and coexistence of solutions with different periodic-
ity. These results are in very good agreement with those
obtained in [4], but in addition to them we found fine struc-
tures of bifurcations and chaotic regions, depending on pa-
rameters values.

As an example we plot;;versush in Fig. 1 (top) for L
T = 30 andvy = 0.085 with Ng = 1. In the parameter 6
space a chaotic region shows up and this behavior mainly :
depends on thevalue but is almost indipendent o and o
T. a |

The localized wake can be extended to more general onf
cases, even to uniformly distributed wakes, described by e
the Haissinski equation. To do so one should introduce the 2 F
superperiodicityV, and let it grow to infinity. This is done i
introducing in the mapping the following substitutions: =

Vs*)Vs/Nsa TO—>TON€7 b—’b/Ns (8) 0';‘HIJH“““IJH“‘“HI”“‘“HI

In Fig. 1 (bottom) we shows;(b) with Ng = 150: the
chaotic behavior exists also féafs; >> 1. In Fig. 2 we
plot o1, versusb for different Ny andb > 0. As N; in-
creases the mapping curves become more closely spa@e%'%'
andoy; (b) converges to the solution of the PWD equation.

Figure 2:01, versusb for different N, andT = 30, v, =
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HAISSINSK| EQUATION

Introducing the variables = wgzi, y = wpxs the

0.05

Haissinski equation can be written as [5]: 0
a? oo ~005
ule) = Kexp(=35 = [ St =)y} ©) -
’ € gy
with the normalization condition
+o0 -0.15
/ u(z)dr =1 (10)
—00 -02
and the following parameter definitionsy = 27 /Tp, v =
V2woo, Ao =2NwoVrr(0)/V rr (0)72, *
Yy
S(y) = Vew(()o)/ W(&)d¢ (11) Figure 3: The comparison of the longitudinal densities
RF 0

ug(x) — um(z) for differentd: b = 0.4 (dotted line),
whereN is the total bunch particles amcthe bunch length. b = —0.1 (dashed line)p = —0.416 (solid line). u, (z)

Following [2] we rewrite equation (4) and (9) as is computed from the mapping witN; = 150 andu (z)

numerically from the PWD equation .
2

logu(z) + Au(z) =log K — %, 12)
K small interval of values: below a critical value éfthe so-
lution of the mapping is unstable and furthermore a chaotic
behavior appear; corrispondingly the Haissinski equation
does not have solution. This result is obtained by numeri-

A 1 11— cal iteration of the mapping and it should be discussed more

— < - Vr—Togz—1 ~ —1.55061  (13) carefully.

K 0 & While the Haissinski equation can give stable solutions
no value ofK can satisfy the normalization condition (10).and predict only the nonexistence of stable solutions, the
This fixes a critical value for our parameterif b < b,,;, mapping (the Gaussian approximation) shows also what
the sistem is unstable. Therefore the solution of Haissinskind of instability (successive period-doubling bifurca-
does not exist and the mapping gives a chaotic behavitions, coexistence of multi-periodic states or chaos) can
for the second order moments. The valuebgf,, in the occur in the parameter space for the bunch length and the
mapping depends on the values of the physical parameteesiergy spread.

Increasing the superperiodicity accordingly to (8) the value As further application of the Gaussian approximation
of b,,,:» Shifts. we plan to consider a regularized inductive wake func-
tion (which restores the existence of solutions of Haissinski
In order to compare the results obtained from the mapgquation below threshold) as recently discussed in [6].
ping with Ny, >> 1 and those from the Haissinski equa- Moreover we will compare our mapping results with

with A\ = eNb/V gr (0)o2. For > 0 the solution exists
always, but not fonn < 0, in particular for

tion, we consider the longitudinal density those obtained from MPT, as done in [1] and [7], where in
. the simplest case of constant wake function a good agree-
u(z) = W(z, y)dy (14) ment with MPT was found.
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