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Abstract

The equilibrium bunch length in electron storage rings
with a purely inductive localized wake function has been
studied, assuming the Gaussian approximation of the dis-
tribution function in phase space. The localized wake
describes more general cases, even uniformly distributed
wakes, described by the Haissinski equation. The com-
parison of our results with those obtained from Haissinski
equation shows good agreement and helps understanding
the validity of the Gaussian approximation.

INTRODUCTION

The wake force describes the electromagnetic interac-
tion between particles and environment and affects the par-
ticles distribution in a bunch. In the conventional analytic
approach one assumes that the source of the wake force
is uniformly distributed along the ring, and the equilib-
rium bunch distribution at low current is a solution of the
Haissinski equation, the so-called Potential Well Distor-
tion (PWD) equation. A linear stability analysis around
this static solution gives the threshold for turbulent bunch
lengthening. Obviously this method tells us very little
about the behavior of the unstable solutions. On the other
hand it is more realistic for large machines to consider the
many sources of wake fields along the ring as localized
objects, as usually assumed in the Multi-Particle Tracking
(MPT) codes.

In a previous paper [1], the authors studied an analiti-
cal model which incorporates the time dependence of the
wake force, assuming that if the initial distribution func-
tion in synchrotron phase space is Gaussian, it can still be
approximated by a Gaussian after the effect of the wake
force, represented as a ’kick’. The distribution function
can be accordingly always represented by its only first and
second order moments, describing the beam envelope in
synchrotron phase space. The evolution of these moments
from turn to turn can be obtained by applying a non lin-
ear mapping at each turn. The equilibrium buch length can
have stable solutions with period-one fixed points as well as
multistable states or a cusp-catastrophe behavior, depend-
ing on the parameters values. The results obtained in [1]
show a good agreement with those obtained from MPT.

The localized wake can be extended to more general
cases, even to uniformly distributed wakes, described by
the Haissinski equation. To do so one should introduce the
superperiodicityNs and let it grow to infinity.

In this paper we study the validity of the Gaussian ap-

proximation with respect to the existence of the equilib-
rium longitudinal distribution of electrons in circular ac-
celerators in the case of a purely inductive localized wake
function.

THE MOMENT MAPPING

The longitudinal beam dynamics in electron storage
rings can be described by the stochastic equations of mo-
tion for a single particle (Langevin equations). Introducing
the canonical variables:

x1 =
longitudinal displacement

natural bunch length
,

x2 =
relative energy spread
natural energy spread

.

and integrating the Langevin equations over one turn, we
obtain the following stochastic mapping:

(
x1

x2

)′
= U

(
x1

Λx2 + r̂
√

1 − Λ2 − φ(x1)

)
,

where �X ′ = (x
′
1, x

′
2) is �X = (x1, x2) after one turn. Here

U is the rotation matrix:

U =
(

cos µ sinµ
− sinµ cos µ

)
, (1)

µ = 2πνs, νs being the synchrotron tune,Λ =
exp(−2/T ), T being the synchrotron damping time mea-
sured in units of the revolution period,r̂ is a Gaussian ran-
dom variable with< r̂ >= 0 and< r̂2 >= 1. The wake
forceφ(x1) is represented by:

φ(x1) =
Qtot

σ0E0

∫ ∞

0

ρ(x − u)W (u)du. (2)

whereE0 is the nominal beam energy,σ0 is the nominal
relative energy spread (σ0E0 is the natural energy spread),
W (x) is the wake potential andρ(x) is the charge den-
sity normalized to one. Note that synchrotron oscilla-
tions have been linearized, and radiation is localized at
one point of the ring [3]. The above stochastic mapping
is equivalent to an infinite hierarchy of deterministic map-
pings in the following statistical quantities:̄xi =< xi >,
σij =< (xi − x̄j)(xj − x̄j) >, and so on, which are the
moments of the distribution functionψ(�x), < ∗ > indi-
cating an average over all particles. Our main assumption
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is that the distribution function in phase space is always a
Gaussian, even in the presence of a wake force:

ψ(x1, x2) =
exp[ 12

∑2
i,j σ−1

i,j (xi − x̄i)(xj − x̄j)]

2π
√

detσ
. (3)

We consider a purely inductive wake function

W (x) = bδ′(x) (4)

and split the mapping for the second order moments into
three parts, representing the effect of radiation, wake-force
and synchrotron oscillation, as it follows:

radiation:

σ′
11 = σ11

σ′
12 = Λσ12

σ′
22 = Λ2σ22 + (1 − Λ2), (5)

wake force:

σ′
11 = σ11

σ′
12 = σ12 +

b

4
√

πσ11

σ′
22 = σ22 +

bσ12

2σ11
√

πσ11
+

b2

6σ2
11π

√
3
, (6)

synchrotron oscillation:

σ′
ij =

2∑
h,k=1

UihσhkU t
kj . (7)

The stability of the system depends on the values of the
synchrotron tuneνs, the damping time (measured in num-
ber of turns)T0 and the strength of the wake forceb.
We studied a wide range of parameters values and found
stable solution of period-one and period-two, multi-stable
states and coexistence of solutions with different periodic-
ity. These results are in very good agreement with those
obtained in [4], but in addition to them we found fine struc-
tures of bifurcations and chaotic regions, depending on pa-
rameters values.

As an example we plotσ11versusb in Fig. 1 (top) for
T = 30 andνs = 0.085 with NS = 1. In the parameter
space a chaotic region shows up and this behavior mainly
depends on theb value but is almost indipendent onνs and
T .

The localized wake can be extended to more general
cases, even to uniformly distributed wakes, described by
the Haissinski equation. To do so one should introduce the
superperiodicityNs and let it grow to infinity. This is done
introducing in the mapping the following substitutions:

νs −→ νs/Ns, T0 −→ T0Ns, b −→ b/Ns (8)

In Fig. 1 (bottom) we showσ11(b) with NS = 150: the
chaotic behavior exists also forNs >> 1. In Fig. 2 we
plot σ11 versusb for different Ns andb > 0. As Ns in-
creases the mapping curves become more closely spaced
andσ11(b) converges to the solution of the PWD equation.

Figure 1: σ11 versusb for T = 30, νs = 0.085 and with
(top)NS = 1 and (bottom)NS = 150.

Figure 2:σ11 versusb for differentNs andT = 30, νs =
0.085.

2997

Proceedings of the 2003 Particle Accelerator Conference



HAISSINSKI EQUATION

Introducing the variablesx = ω0x1, y = ω0x2 the
Haissinski equation can be written as [5]:

u(x) = K exp{−x2

γ2
− λ0

∫ +∞

0

S(y)u(x − y)dy} (9)

with the normalization condition
∫ +∞

−∞
u(x)dx = 1 (10)

and the following parameter definitions:ω0 = 2π/T0, γ =√
2ω0σ, λ0 =2Nω0VRF (0)/

·
V RF (0)γ2,

S(y) =
eω0

VRF (0)

∫ y

0

W (ξ)dξ (11)

whereN is the total bunch particles andσ the bunch length.
Following [2] we rewrite equation (4) and (9) as

log u(x) + λu(x) = log K − x2

γ2
, (12)

with λ = eNb/
·

V RF (0)σ2. Forλ ≥ 0 the solution exists
always, but not forλ ≤ 0, in particular for

λ

γ
≤ −

∫ 1

0

1 − x√
x − log x − 1

∼ −1.55061 (13)

no value ofK can satisfy the normalization condition (10).
This fixes a critical value for our parameterb: if b < bmin

the sistem is unstable. Therefore the solution of Haissinski
does not exist and the mapping gives a chaotic behavior
for the second order moments. The value ofbmin in the
mapping depends on the values of the physical parameters.
Increasing the superperiodicity accordingly to (8) the value
of bmin shifts.

In order to compare the results obtained from the map-
ping with Ns >> 1 and those from the Haissinski equa-
tion, we consider the longitudinal density

u(x) =
∫ +∞

−∞
ψ(x, y)dy (14)

and compare that one obtained from the mapping with
Ns = 150 and the solution of the Haissinski equation (9).
The comparison of the longitudinal densities for differentb
is shown in Fig 3.We found that approaching the threshold
valuebmin the comparison becomes more and more mean-
ingless.

CONCLUSIONS

Forb > 0 and superperiodicityNs >>1, the mapping of
the second order moments shows stable solutions of period
1 and periodn, accordingly to what happens withNs = 1
[4]. For b < 0 andNs >> 1 the solution is stable only in a

Figure 3: The comparison of the longitudinal densities
uH(x) − um(x) for different b: b = 0.4 (dotted line),
b = −0.1 (dashed line),b = −0.416 (solid line). um(x)
is computed from the mapping withNs = 150 anduH(x)
numerically from the PWD equation .

small interval ofb values: below a critical value ofb the so-
lution of the mapping is unstable and furthermore a chaotic
behavior appear; corrispondingly the Haissinski equation
does not have solution. This result is obtained by numeri-
cal iteration of the mapping and it should be discussed more
carefully.

While the Haissinski equation can give stable solutions
and predict only the nonexistence of stable solutions, the
mapping (the Gaussian approximation) shows also what
kind of instability (successive period-doubling bifurca-
tions, coexistence of multi-periodic states or chaos) can
occur in the parameter space for the bunch length and the
energy spread.

As further application of the Gaussian approximation
we plan to consider a regularized inductive wake func-
tion (which restores the existence of solutions of Haissinski
equation below threshold) as recently discussed in [6].

Moreover we will compare our mapping results with
those obtained from MPT, as done in [1] and [7], where in
the simplest case of constant wake function a good agree-
ment with MPT was found.
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