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COUPLING IMPEDANCES FOR CORRUGATED BEAM PIPES
FROM IMPEDANCE BOUNDARY CONDITIONS
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Abstract

An equivalent wall impedance describing the electro-= = €0 (i) %/
magnetic boundary conditions at corrugated pipe walls igi(”)’ZOvl(w):W {Yoj{aSZW”VFDEOn ro)®
introduced in the context of a general perturbative approach
for computing the longitudinal and transverse beam cou- SV [ﬁOE(irr.)(F 7:*1)_~_ﬁ71E(sol.)(7;» 41)} dl+
pling impedances in complex heterogeneous pipes. ! " ’ 0 ’

—¢ Vi By (7 70) @ Vi B (7,7 dE} . (2
INTRODUCTION o Ee (R0 @ Ve B )l L (@)
Coupling impedances are a powerful tool for studyingvherec = (eouo)~'/? is the speed of light in vacuum,
the interaction between a charged particle beam and the = (eo/u0)'/? is the vacuum characteristic admittance,
surrounding chamber. Unfortunately, coupling impedances and 1,y being the vacuum permittivity and permeabil-
can be usually computed only by numerical methods leadty, 3, is the relativistic factorg) is the total beam charge,
ing to computationally intensive design optimization pro-£(°!), E(#") are the solenoidal and irrotational parts of
cedures. the electric field, a suffix " identifies theunperturbed
The combined occurrence of complex geometrical feafuantities, and an impedance (Ledvith) boundary con-
tures and/or the use of several different wall materialglition is assumed to hold at the (perturbed) pipe wall
make the electromagnetic boundary value problem analyt- - .
ically almost untractable. As a matter of fact, only a few lin, X (i, X B — ZyauH)os =0, 3)
analytic solutions for coupling impedances are available, ) ) .
for simple cases where, e.g., the Laplacian is separable }"€€ Zwau iS the pipe-wall complex characteristic
the pipe cross-section coordinates, and the boundary Cdmpedar_wce "?md” is the unit vector normal t95. .
ditions are very simple too (e.g., perfect conductors). The first integral term on the rh.s of (1) and (2) is
In this paper we estimate the longitudinal and transverdi?12€ro if and only iZy.qu; 1S not identically zero oS,

coupling impedances for a pipe with corrugated walls usa_md accounts for the effect of the (complex) wall conduc-

ing the general framework presented in [1] and summarizéyity' The second integral term on the r.h.s. of (1) and (2),

below, using an impedance boundary condition (b.c.) of th@n the other hand, accounts for the effect of the geometrical

Leontbvich type, to account for the corrugations. An applifhegtﬁr:g:rtigpbggtgiisloﬁgl(;a%n?ggri:gn'zizrﬂci;ailggn(:?ly if

tion t didate LHC try is included. ~, 0z }
cation fo a candidate geomety 1S Include cally zero ondS. Letting Ey in place ofE in (1) and (2),
one obtains a first order perturbative formula for the beam
COUPLING IMPEDANCES coupling impedances in thgerturbed pipe.

IN COMPLEX PIPES

According to [1] the longitudinal and transverse beam
coupling impedances, (w) and Zo . (w) of a simple, [ gt
unperturbed pipe (e.g., circular, perfectly conducting) as- 7= 7,(0) = R’b(g) + (;R'(g)’ )
sumed known, can be related to thdggw), Z, (w) of an- - _ _
other pipe differing from the former by sonperturbation ~ the (transverse) position of a point on the (perturbed) pipe
in the boundary geometry and/or constitutive properties, &oundaryds, wherefz, (¢#) defines the unperturbed bound-
follows (beam af = 0) *: ary 05y, 0R(6) describes the:-independent roughness,

and@ is the polar angle. To first order in the corrugations,

CORRUGATED BEAM PIPES

€0 (irr)*
Zyw) —Z =——<Y alto, 3 % (= x (D * 5
16) = Zo,jw)| 506@2{ 0 7483% o, 7 () Eg.(7) ~ Eg(By) + VEL| 5 - OR. )

_ ol , The first term in (5) is obviously zero (the unperturbed
[ﬂoEy(lW') +6, "B ')@} df—j{Eéz @ESW')@W} (1)  boundary is by assumption a perfect conductor). The un-
09 perturbed longitudinal field is related to the potendg|

1The beam impedances are obviously independent of the total beam
charge, as the field in (1) is proportional@ Ej, = —jk(1 — ﬁg)q)(’;, (6)
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whereby From (13) one readily obtains
Ef = -V, (7) L ar 3
so that (5) becomes o(r) = 2meq 712 (14)
and:
Eg.(7) ~ k(1 = 35) G, (Ry)itno (6) - 0R.  (8) . . 07
lim V;‘OEQ (’F, ’f’b) = lim V;l Eo(ﬁ ’Fl) = — 3 (15)
ro—0 r1—0 TEQT

since the tangential component Bf, at the unperturbed

boundary (perfect conductor) is zero . Now consider the perturbed case of a circular pipe with
ACCOlengly, the Integral n (1) which accounts for theuniform wall impedanc@wa”_ Using eq.s (1) and (2) with

effects of the geometrical perturbation of the pipe boundary’ — £, together with (14) and (15), one readily obtains
can be written, to first order:
Zwall Z Zwall

I= k(L= 8) § _n()SHO) E5, (OF &t @ 2R koS v
o0 in agreement with the known exact result [2]. One is there-
where/ is a curvilinear coordinate afS. fore led to guess that eq.s (9), (11) should be likewise ac-
Similarly, to first order in the corrugation terdiz, curate for computing the couipling impedances contributed

by corrugations. Hence, for a perfectly conducting pipe
VFOEE;Z (Fbv FO) ® Vf’l EOn(Fba 771)

, (2o 5 By
~ jk(1 — 33)0R - io(0) 2y =9 g 4L= W(“wuﬁuyuy), an
. [vﬁ) E}, (Ry,70) ® Vi Eon(Rp, ™)| - (10) where % f-(”%(f)dﬂ
Accordingly, the integral in (2) which accounts for the ef-  (Z(®)y — _jp1 — g2)7,2%% ______ (18)
fects of the geometrical perturbation of the pipe boundary 2R
can be written, to first order: is the circumferential average of (12). It is seen that suit-
able ¢-independent) corrugations can be used to compen-
I =—jk(1 - 68)}4 G (0) - 5]?3(5) sate the remaining reactive terms in the beam coupling
9So impedance at a specific frequency.
AVl (670) € Vi Eon (671 Y risiodl - (1) LHC IMPEDANCE BUDGET

Comparison of (9), (11) to (1) and (2) shows that the
roughnes® R(0) is "equivalent” to a non-uniform, purely
reactive impedance loading

The candidate LHC geometry includes two corrugated
sections as shown in Fig.1 below. The corrugations con-

Zysai™ = —3k(L = §53) Zoiino(6) - 6F(6),  (12) 22.1 mm
laid down on the unperturbeded pipe wall. It is also seen -/~
that, for the special case wheYR(0), is a random process, i AN E
its statistical moments are simply related to those of the ;’ \ ~ 10 mm
equivalent wall-impedance (12). These findings are more \ /’ :
or less obviously related to the general formalism devel- A\ PPAS
oped in [3] for describing (weakly) irregular surfaces in
terms of impedance boundary conditions. ]
CORRUGATED CIRCULAR PIPE /\/\/\ 30-4Qu
As a simplest example, we refer to a corrugated perfectly
conducting circular pipe. The unperturbed geometry is a 2mm
smooth perfectly conducting pipe of radiltss The unper-
turbed field produced atby a beam af is 2 Figure 1: A simplified candidate LHC geometry.
Bo (7 70) = Q { F—7  7—7To(R/ro)? } tributions to the (reactive) impedance budget can be eas-
’ 2meq | |7 — 70| |7 —7To(R/r0)?12 ) ily computed using (13) for the unperturbed field, with
R ~ 14mm. Assuming3 ~ 0.987, it is found from (18)
2The field (13) is the vacuum field produced by beanfgtand its and Fig-ltha(Xfuecglql”U.” ~ —1.467-10%ohm at the beam
image ato (R/r0)?. circulation frequencys£ 11KHz).
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