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Abstract

A self-consistent one-dimensional waterbag equilibrium
12 (x, p,;) for a sheet beam propagating through a smooth
focusing field is shown to be exactly solvable for the
beam density n{(z) and space-charge potential ¢°(x). A
closed Schrodinger-like eigenvalue equation is derived for
small-amplitude perturbations, and the WKB approxima-
tion is employed to determine the eigenfrequency spec-
trum as a function of the normalized beam intensity s, =
@ﬁb/'yfng_, where L’ng = 4drnpel /yomy is the relativis-
tic plasma frequency-squared and 7, = n,(z = 0) isthe
on-axis number density of beam particles.

SHEET BEAM EQUILIBRIUM WITH
UNIFORM PHASE-SPACE DENSITY

We consider an intense sheet beam [1], made up of parti-
cles with charge e, and rest mass m,, which propagatesin
the z-direction with directed kinetic energy (v, — 1)mjc?
and average axia velocity V, = [yc = const. Here,
v = (1 — B2)~1/2 isthe relativistic mass factor, c is the
speed of light in vacuo, and the beam is assumed to be uni-
form in the y- and z- directions with /9y = 0 = 9/0=.
The beam is centered in the x - direction a x = 0, and
transverse confinement is provided by an applied focusing
force, me"c = —’mebwgJ_I, with w%l = const in the
smooth focusing approximation. The transverse dimension
of the sheet beam is denoted by 22, and planar, perfectly
conducting wallsarelocated at x = +x,,. The particle mo-
tion in the beam frameis assumed to be nonrelativistic, and
we introduce the effective potential ¢(z, ¢) defined by

1 1
Y(x,t) = §7bmbng_$2 + ?GW(&"J)- 1)
b
The Vlasov-Maxwell equations describing the self-
consistent nonlinear evolution of f,(z,p.,t) and ¥ (z,t)
can be expressed as [2]

0 o oo\,
and 52 )
) dme; [
a—;é = 7bmbng_ - ’Y—Eb/— dpz fo- ©)

As an equilibrium example (0/0t = 0) that is analyti-
cally tractable, we consider the choice of distribution func-
tion

)

Fy(H.) = OH.-H), @

(SypmmpH 1 )1/2
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where H, = p2 /2y,myp+4°(2) isthe transverse Hamilto-
nian, ©(x) is the Heaviside step-function, and 7;, }AIL are
positive constants. Evaluating the number density n{ (z) =
[ dp. Fy,(H. ), we readily obtain

~ 0 . q1/2
() = { o [1 = @)/ —a <2 <
07 ‘.’,E| > Xp.
®)
Here, the location of the beam edge (z = +x3) is deter-
mined from

(¢ = +a) = Hy, (6)

where 4% (x = 0) = 0 isassumed. It is useful to introduce
the effective Debye length A p defined by

WwHL 19373

\p =
D — o~ 2 - ~92 .
drnpe; 2 Wy,

)

Here, 5y = (2H, /yyms)*/? is the maximum speed of a
particle with energy H, asit passesthrough z = 0. Sub-
stituting Eg. (5) into Eq. (3) then gives

O (@Y _ 1 (1 [ @] g

sz(ﬁl>_)\2D Sb [ ﬁL:| ©
in the beam interior (—z;, < x < x;). Equation (8) isto be
integrated subject to the boundary conditions [¢°] _ =
0 = [8¢°/0x]_, . For physically acceptable solutions to
Eq. (8), the condition [9%¢°/d2?] _ > 0imposesthere-
quirement that s; liesin the interval 0 < s, < 1, where
sp = W /vwh, . Theregime s, < 1 corresponds to
a low-intensity, emittance-dominated beam, whereas the
regime s, — 1 corresponds to a low-emittance, space-
charge-dominated beam. In solving Eq. (8), it is convenient
to introduce the dimensionless variables defined by

(x) = ) ©

T Ap’ H,

€T —~

X

Substituting Eqg. (9) into Eqg. (8), integrating once, and en-
forcing [°] _, = 0= [0y°/dx] _,,gives

—~ 2
Lfdp®) 1~ 2 “0\3/2
5(5) =g

(10)
in the interval —z,/Ap < X < x,/Ap. Equation (10)
can be integrated exactly to determine X' as a function of
(1 — "2 = nd(X) /7, [see Eq. (5)]. We express X =
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N~ ~
I a0 /(dg° /dX), change variablesto = = (1—4°)1/2,
and make use of Eq. (10). Thisgives[1, 3]
X _ 3L/ /1 zdz
(1—aoyrz (1= 2)(at = 2)(z —a™)]1/2’
(11)
where o™ and o~ are defined by
+ _ L _ _ 2\11/2
0 = {325 £33+ s —4s))]'7}. (12)
b

From Egs. (6) and (11) we obtain aclosed expression for
xp/Ap interms of the normalized beam intensity s, for the
choice of equilibrium distribution function in Eq. (4). The
areal density of the beam particles, N, = [*" dang(x),
for the density profilein Eq. (5) can be expressed as

Ny = 2y, /wb de‘[l — 1/]0(1;)/‘[::\%_}1/2, (13)
0

Some algebraical manipulation that make use of Egs. (9),
(10) and (13) gives

Ny _ 512D AD / 22dz
2Ny, zp Jo [(1-2)(at —2)(z —a7)]V/2
(14)
where x,/Ap is determined from Eq. (11). Note that

Ny/2npx, depends only on the dimensionless inten-
sity parameter s,. Typical normalized density profiles
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Figure 1. Plots of the normalized density profile
2zynY) (z) /Ny versus x/x; for different values of the nor-

malized beam intensity s; corresponding to (a) s, = 0.2,
(b) sy = 0.9, (C) sp = 0.99, (d) sp = 0.999, (e) Sp =
0.999999.

2zyny) (z) /Ny areillustrated in Fig.1 for values of s, rang-
ing from s, = 0.2 to s, = 0.999999 [1]. Finaly, defin-
ing the equilibrium transverse pressure profile by P?(z) =
[ dpa(p? /o) £, we readily obtain

4
Pz?(x)zg

3/2
wi(x)} . (15)

i [1 -
1

Comparing Egs. (5) and (15), note that P?(z) =

const[nd(z)]®, which corresponds to a triple-adiabatic

pressure rel ation.
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LINEARIZED EQUATIONSAND
STABILITY ANALISIS

The linearized Vlasov-Maxwell equations can be ex-
pressed as [2]

B, o O 9 95y OF,
<8t T g axapx)‘sfb”maxam’ (16
and 52 )
R L
@ - '}/g 6nb7 (17)

where ony(x,t) = ff‘;o dp.0 fy is the perturbed number
density of beam particles. In analyzing Egs. (16) and (17),
it is convenient to change variables from (z, p,,t) to the
new variables (z', H, , ) defined by [1]

T=t,  H = p2 +¢°(2).

18
2vemp (18)
Substituting Egs. (18) into Egs. (16) and (17) gives for
the evolution of the perturbations ¢ f,(z', H,,7) and

op(a’, 7),

0 0 96 OF,
( 2l )m N
o? 4re?
axﬂ(w =— 72 ny,. (20)
In Eq. (19), v. = 4v(H,,2') for the forward-moving
particles with v, > 0, and v, = —v(H,,z’) for the
backward-moving particles with v, < 0, where
20\ 0]
vm—:th,x/—:t<—> [1—] .
(Ha, o) Yo H,
(21)
Furthermore,
oF, p -~
where 5, = (2H. /yms)Y/2. Using Egs. (19)-(22)

and introducing 0E,(z',7) = —(9/0x")0¢(z',T) =
—(72/ep)(0/0x")orp(a’, ), after some algebraic manipu-
lation we obtain [1]

0? 9 0 0
9.2 d0E, — UGN (z )% [N(x )%551;,}
@21)
= —%N(x')(SEm, (23
Ty

where N (z') is the (dimensionless) profile shape function
defined by

N(z') = [1 - 1&‘1(96’)] 1/2. (24)

o,

In the analysis of Eqg. (23), we make use of
a normal-mode approach and express JE. (x',7) =
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§E,(z',w) exp (—iwT), Where w is the (generally com-
plex) oscillation frequency. Equation (23) can be repre-
sented in a convenient form by introducing the angle vari-
able « defined by

7TX/ WO -/
“TIX, T (25)
where X’ and w are defined by
“ dy! T Vg
X' = i = —— 26
/O N@y T 2x, (26)

where X;, = X’(z;). Substituting Eqg. (25) into Eq. (23)
gives the eigenval ue equation

~2

5 Wpp
— N«
713 ()

2 ~ ~
wg%éEz + SE, = 0. (27)

0

Equation (27) isto be solved over the interval —7/2 <
a < /2 subject to the boundary conditions 6]@(04 =
+7/2,w) = 0. Substituting Egs. (10) and (24) into Eq.
(25) gives

oo TAD [ dz
2%,° /N[<1z><a+z><za>1

where o™ is defined in Eq. (12). Some algebraical manip-
ulation gives exactly for theinverse function N («)

_q1/2
a X at—a
[1 —atK2sn? <;—D” [T} ,n)}
— Kk2sn? (2& [—ﬁ*a*}l/z ﬁ)]
T AD 3 )

where sn(g, ) isthe Jacobi elliptic sine function and x =
[(1—a™)/(at—a™)]*/2. InEgs. (28)-(29), the” stretched”
half-layer thickness (X;) measured in units of the Debye
length (Ap) isgiven by

5o (28)

» (29

X 2.31/2

)\—; = W—?)WF (arcsin (/{2/@*)*1/2,&) , (30)
where F' is the dliptic integral of the first kind. Using
the expression for N («) in Eq. (29), the eigenvalue equa-
tion (27) can be solved numerically for 6@1(047 w) and the
eigenvalues w? subject to the boundary conditions EI(oz =
+7/2,w) = 0. An approximate expression for the eigen-
values of the Schroedinger-like equation (27) can be ob-
tained in the WKB approximation. The Born-Zommerfeld
formula, when applied to Eq. (27), gives

5 2 SN2 1/2
Lb/ do [(Vi m) —N(a)] =mm, (31)
YoWo J—r/2 Wpb

where w,,, is the mth-mode eigenfrequency with m half-
wavelength oscillations of §F, over the layer thickness.
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Making use of Eqg. (28), theresult in Eq. (31) can be rewrit-
ten as

e [ dz(q2, — 2)/?
° /0 [(1—2)(at —z)(z —a™)]1/2

where ¢,,, and r are defined by ¢, = wp,/(Dps/7s) and
r = k[(¢2, — a)/(¢3, — 1)]'/2. Equation (32) has been

(32)

= 1mm,

4

Figure 2: Plots of the normalized mode freguencies
wm /w1 versus the on-axis (x = 0) tune depression
v/vy = (1 — s3)'/? for several values of mode numbers
m = 1,2,3,4. The dotted curves are the numerical so-
lutions of the eigenvalue equation (27); the solid curves
are the solutions obtained in the WKB approximation [Eq.
(32)].

solved numerically [1] for w2,, and the results have been
compared with the numerical solutions of the eigenvalue
equation (27) (Fig. 2). In Fig. 2, the convention is such
that there are m haf-wavelength oscillations of 0 E,, over
the layer thickness. Note that low beam intensity (s, < 1)
correspondsto v /vy — 1, withw,, ~ mwg, , whereasthe
space-charge-dominated regime (s, — 1) corresponds to
v/vg — 0, Withwy, ~ wg i ~ Gpp /7.

To summarize, we have demonstrated that the self-
consistent waterbag equilibrium f; satisfying the steady-
state (0/0t = 0) Vlasov-Maxwell equations is ex-
actly solvable for the beam density n9(x) and electro-
static potential ¢°(x). In addition, we derived a closed
Schroedinger-like eigenval ue equation for small-amplitude
perturbations (4 f5, d¢) about the self-consistent waterbag
equilibrium in Eq. (4). In the eigenvalue equation, the den-
sity profile nf(z) plays the role of the potential V() in
the Schroedinger equation. The eigenvalue equation was
investigated analytically and numerically, and the eigenfre-
guencies were shown to be purely real.
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