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Abstract 
Plasma neutralization of an intense ion pulse is of 

interest for many applications, including plasma lenses, 
heavy ion fusion, cosmic ray propagation, etc. An 
analytical electron fluid model has been developed based 
on the assumption of long charge bunches (lb>>rb). 
Theoretical predictions are compared with the results of 
calculations utilizing a particle-in-cell (PIC) code. The 
cold electron fluid results agree well with the PIC 
simulations for ion beam propagation through a 
background plasma. The analytical predictions for the 
degree of ion beam charge and current neutralization also 
agree well with the results of the numerical simulations. 
The model predicts very good charge neutralization 
(>99%) during quasi-steady-state propagation, provided 
the beam pulse duration bτ  is much longer than the 
electron plasma period 2 / pπ ω , where 

( )1/ 224 /p pe n mω π=  is the electron plasma frequency, 
and np is the background plasma density. In the opposite 
limit, the beam pulse excites large-amplitude plasma 
waves. The analytical formulas derived in this paper can 
provide an important benchmark for numerical codes, and 
provide scaling relations for different beam and plasma 
parameters.  

INTRODUCTION 
Neutralization of the ion beam charge and current by 

a background plasma is an important issue for many 
applications involving the transport of positive charges in 
plasma, including heavy ion inertial fusion, positrons for 
electron-positrons colliders, high-density laser-produced 
proton beams for the fast ignition of inertial confinement 
fusion targets, etc. 

There are many critical parameters for ion beam 
transport in the target chamber, including beam current, 
type of ion species, radial and longitudinal profiles of the 
beam density, chamber gas density, stripping and 
ionization cross sections, etc. This necessitates an 
extensive study for a wide range of parameters to 
determine the conditions for optimum beam propagation. 
To complement numerical simulation studies, a number of 
reduced models have been developed. Based on well-
verified assumptions, reduced models can yield robust 
analytical and numerical descriptions and provide 
important scaling laws for the degrees of charge and 
current neutralization.  

The electron response frequency is of order the 
electron plasma frequency, ( )1/ 224 /p p en e mω π= , where 

pn  is the background plasma density. For heavy ion 
fusion applications, the ion pulse propagation time 
through the chamber is much longer than the inverse 
electron plasma frequency 1

pω− . Therefore, a beam-
plasma quasi-steady state forms during beam propagation. 
The initial step of the study is to describe the steady-state 
propagation (in the beam frame) of an ion beam pulse 
through a background plasma.  

The case where the beam propagates through a cold 
plasma, with the plasma density large compared with the 
beam density, can be studied by the use of linear 
perturbation theory [1]. Here, we focus on the nonlinear 
case where the plasma density has an arbitrary value 
compared with the beam density, and correspondingly, the 
degrees of current and charge neutralization are arbitrary. 
The transport of stripped, pinched ion beams has also 
been discussed in [2], where the assumptions of current 
and charge neutrality were made to determine self-
consistent solutions for the electric and magnetic fields. 
Rosenbluth, et al., have considered the equilibrium of an 
isolated, charge-neutralized, self-pinched ion beam pulse 
in the absence of background plasma [3]. In contrast, we 
consider here the case where ''fresh'' plasma is always 
available in front of the beam, and there are no electrons 
co-moving with the beam.  

In a recent calculation [4,5], we studied the nonlinear 
quasi-equilibrium properties of an intense ion beam pulse 
propagating through a cold background plasma, assuming 
that the beam pulse duration bτ  is much longer than the 
inverse electron plasma frequency, i.e., 1>>bpτω . In the 
present study, we generalize the previous results to 
general values of the parameter p bω τ . 

BASIC EQUATIONS FOR ION BEAM 
PULSE PROPAGATION IN  
BACKGROUND PLASMA 

In most applications, the background plasma 
electrons are cold – the electron thermal velocity is small 
compared with the directed beam velocity. Particle-in-cell 
simulations show that in most cases the electron flow is 
laminar and does not form multistreaming. Thus, the 
electron cold-fluid equations can be used for the electron 
description, and thermal effects are neglected in the 
present study. The electron fluid equations together with 
Maxwell's equations comprise a complete system of 
equations describing the electron response to a 
propagating ion beam pulse. The electron cold-fluid 
equations consist of the continuity equation, 
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and the force balance equation,  
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where -e is the electron charge, Ve is the electron flow 
velocity, e e e emγ=p V  is the average electron momentum, 

em  is the electron rest mass, and eγ  is the relativistic 
mass factor. Maxwell's equations for the self-generated 
electric and magnetic fields, E and B, are given by 

( )4 1
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e Z n n
c c t
π ∂∇× = − +
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EB V V , (3) 

1
c t
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∂
BE , (4) 

where Vb is the ion beam flow velocity, en  and bn  are the 
number densities of the plasma electrons and beam ions, 
respectively (far a way from the beam e pn n→ ), and bZ  
is the ion beam charge state. The plasma ions are assumed 
to remain stationary with Vi = 0 and i pn n= . The 
assumption of immobile plasma ions is valid for 
sufficiently short ion pulses with  2 /b b el r M m<  [4]. 
Here, br  and 2 bl  are the ion beam radius and length, 
respectively, and M  is the plasma ion mass. 
 Considerable simplification can be achieved by 
applying the conservation of generalized vorticity Ω [4]. 
If Ω is initially equal to zero ahead of the beam, and all 
streamlines inside of the beam originate from the region 
ahead of the beam, then Ω remains equal to zero 
everywhere, i.e., 

Ω 0e
e
c

≡ ∇× − =p B . (5) 

Substituting Eq.(5) into Eq.(2) yields 
e

eK e
t

∂
+ ∇ = −

∂
p

E , (6) 

where 2( 1)e e eK m cγ= −  is the electron kinetic energy. 
Note that the inertia terms in Eq.(6) are comparable in 
size to the Lorentz force term and cannot be omitted. 
Estimating the self-magnetic field from Eq.(5), we 
conclude that the electron gyroradius is of order the beam 
radius. This is a consequence of the fact that the electrons 
originate from the region of zero magnetic field in front of 
the beam. If most electrons are dragged along with the 
beam and originate from the region of large magnetic 
field, the situation may be different [3, 6]. 

APPROXIMATE SYSTEM OF 
EQUATIONS FOR LONG CHARGE 

BUNCHES ( bb rl >> ) 

We use the assumption of a long ion pulse ( bb rl >> ), but 
relax the assumption of a dense beam used in [4,5], i.e., 
the condition /b p bV lω << .  

The typical longitudinal scale of electron density 
perturbations is /b pV ω . If /b p bV rω >> , the main 
variations are in the radial direction, and longitudinal 
derivatives can be neglected in comparison with the radial 
derivatives in Poisson’s equation. This gives for steady-
state beam propagation 

( ) ( )1 0e
ez bz e er

n
V V rn V

z r r
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It follows from Eq.(5) for cylindrically symmetric beams 
that the azimuthal self-magnetic field is determined in 
terms of the longitudinal flow velocity, which gives 

ezpcB
e r

∂
= −

∂
, (10) 

( )1 4
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r r r c

π∂ ∂− = −
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Equation (11) describes the longitudinal electron flow 
velocity and determines the degree of current 
neutralization of the beam. In Eq. (11), we neglected the 
displacement current. The displacement current can be 
comparable with the electron current if /b pV ω is 
comparable with bl . However, in this case both the 
displacement current and the electron current are small 
compared with the other terms in Eq. (11). 

Numerical solutions of the system of equations 
consisting of Eqs. (7) - (9) and Eq.(11) are presented in 
[7] and [8]. In Fig.1, we present a detailed comparison of 
the fluid and PIC results. The fluid results of Eqs. (7) - (9) 
and Eq. (11) agree well with the results of the two-
dimensional electromagnetic PIC simulations described in 
[4]. 

In the linear case, when bbp nZn >> , the equation for 
electron plasma oscillations is given by [4] 

2
2 2

2 ( ) 0bz e p e b b bV n n Z n n
z

ω∂ + − − =
∂

. (12) 

Equation (12) is readily recovered from the linearized 
version of Eqs.(1) and (2) and Poisson’s equation, and is 
not restricted by any requirements on the beam radius. It 
can also be derived from Eqs. (7) - (9) when the nonlinear 
terms are neglected. Because the reduced model 
consisting of Eqs. (7) - (9) and Eq. (11) gives the same 
results in the limit /b p bV rω >> , and in the linear case 
where bbp nZn >> , it also works well in the intermediate 
case where / ~b p bV rω , as can be seen in Fig.1. For 

b pn n> , the plasma waves break [4] as shown in 
Figure 2. The utilization of the cold-fluid model is 
therefore limited by the wave-breaking condition. 

The approach used here can be generalized to the 
case of a nonuniform, nonstationary, warm electron fluid, 
and forms the basis for a hybrid, semi-analytical approach 
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Figure 1 Neutralization of an ion beam pulse during steady-state 
propagation of the beam pulse through a cold, uniform, 
background plasma. The figure shows comparisons between the 
PIC simulations and the fluid description. The beam propagates 
in the y-direction. The beam density has a flat-top profile, and 
the red lines show the beam pulse edge. Shown in the figure are 
color plots of the normalized electron density (ne/np) for particle-
in-cell simulations (top left) and the fluid model consisting of 
Eqs. (7) - (9) and Eq. (11) (top right) in ( /px cω , /py cω ) 
space. The lower figure shows the normalized electron density 
(ne/np), and the normalized longitudinal current (jy/enpc) in the 
beam cross-section at x=0 (lowest curves). The brown contours 
in the upper figure show the electron trajectories in the beam 
frame. The beam velocity is Vb=0.5c, and the beam density is 
nb=0.5np. The beam dimensions correspond to rb=0.1 / pc ω  and 

lb=1.0 / pc ω .  

 
obtained in the numerical simulations shows complex 
collective phenomena during beam entry into and exit 
from the plasma, and will be described in future 
publications. Further visualization is also available on the 
website [9]. 
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Figure 2 Electron phase space for 1D simulation of beam 
entering the plasma at t=0. Here, lb=30Vb/ωp and nb = 2np. The 
times after entering the plasma plug correspond to (a) t=113/ωp, 
and (b) t=245/ωp . 
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to be used for calculations of beam propagation in the 
target chamber. This research is now underway. 

In summary, the analytical results agree well with the 
results of PIC numerical simulations for ion beam charge 
and current neutralization. The visualization of the data  

 

2977

Proceedings of the 2003 Particle Accelerator Conference




