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Abstract 
In this work we present results of investigation of the 

characteristics of inhomogeneous sections on the base of 
a disk–loaded waveguide with different laws of hole 
radius variation. We have shown that in the case when 
coupling of cavity fields is small there is a traveling wave 
in a waveguide even for the non-smooth laws of hole 
radius variation. But the traveling wave regime exists 
only at a certain frequency (operating frequency). Unlike 
the homogeneous accelerating structures, where 
reflections can arise only from the couplers, in the case of 
inhomogeneous structures there is no a pure traveling 
wave regime inside the wavegiuide at the frequencies 
different from the operating one. We investigate the RF – 
properties of different accelerating structures with random 
distribution of the hole sizes. 

INTRODUCTION 
The calculations performed by us on the base of a new 

disk-loaded waveguide model (coupled cavity chain) [1] 
indicate that for waveguides with the period D ≥ λ / 3, 
where λ is the free-space wavelength, the “remote” 
coupling influences weakly on the phase shift per cell. 
For ϕ = 2π / 3, taking into account the “cross-cavity 
coupling” ((n, n-1), (n, n+1), (n-1, n+1), n is the cavity 
number) at a / λ < 0.14 (a is the coupling hole radius), 
one can expect to achieve an accuracy of forming a phase 
shift per cell of the order of ∆ϕ = 0.05. If one restricts 
oneself only “paired coupling” ((n, n-1), (n, n+1)), then, 
the accuracy of phase shift per cell is getting worse - 
∆ϕ = 0.5. Development of the techniques of disk-loaded 
waveguide cell tuning that should allow making feasible 
the cross-cavity coupling is a difficult task, since during 
tuning of the n-th cavity one has to take into account, 
somehow, the effect from the (n+1)-th cavity which has 
not yet been tuned. 

In the paper [2] we present the results of our research 
on the technique of cell-tuning in a strongly 
inhomogeneous disk-loaded waveguides which realizes 
paired coupling. 

This paper presents the simulation results of our 
research on the technique of cell-tuning which realizes 
paired coupling. 

UNDERLYING THEORY 
It follows from the paper [2] that an infinite chain of 

cylindrical cavities of the length d and the radii bn , 
coupled through co-axial cylindrical holes with the radii 
an in the cavity dividing walls of thickness t 
(inhomogeneous disk-loaded waveguide with the period 

D = d + t) at D ≥ λ / 3 can be, with a definite accuracy, 
described by a set of coupled equations 
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where un is the amplitude of E010-mode in the n-th 
cavity, ωn is the n-th cavity eigenfrequency, αn

(-), αn
(+) are 

the relative eigenfrequency shifts due to the coupling with 
(n+1)-th and (n-1)-th cavities, βn,n-1, βn,n+1 are the 
coupling coefficients. If αn

(+) and βn,n+1 are determined by 
geometrical dimensions of only the n-th and (n+1)-th 
cavities, as well as by the coupling hole radius an+1 (αn

(-), 
βn,n-1 are determined by geometrical dimensions of the n-
th, (n-1)-th cavities and the hole radius an), then we shall 
say that the cavity coupling is paired. If these coefficients 
depend on geometrical dimensions of three cavities (n-th, 
(n-1)-th and (n+1)-th), as well as two coupling hole radii 
an,  an+1, then, such coupling we shall call “cross-cavity 
coupling”. 

Let’s find the conditions when the set (1) at ω = ω* (ω* 
is the operating frequency) has the solution of such form 

)exp(0, ϕinuu nn =  

where un,0 is the real value. It follows from (1) that in 
order to achieve this the following condition is to be 
fulfilled 

0,11,0,11, ++−− = nnnnnn uu ββ  

For the n-th cavity eq. (1) will take the form 
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and for the (n-1)-th cavity 
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From (2) and (3) it follows that if αn
(+) is independent 

from the parameters of the (n+1)-th cavity, αn-1
(-) - from 

the parameters of the (n-2)-th cavity and βn-1,n, βn,n-1 
depend only upon the parameters of the n-th and (n-1)-th 
cavities, then, two equations (2) and (3) become closed 
and determine fully the relation of geometrical 
dimensions of the n-th and (n-1)-th cavities. In this case, 
having tuned the (n-1)-th cavity, one can find the 
condition, which must satisfy the geometrical dimensions 
of the n-th cavity, and, consequently, allow tuning 
consecutively all waveguides cavities. It can be shown 
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that at the paired coupling βn-1,n = βn,n-1 and these 
coefficients are determined by the geometrical 
dimensions of the n-th and (n-1)-th cavities, only. Things 
are more complicated with the dependence of coefficients 
αn

(+) on the parameters of the (n+1)-th cavity and αn-1
(-) 

on the parameters of the (n-2)-th cavity. Such dependence 
exists even under the assumption of paired coupling. 
However, our calculations shown that this dependence is 
considerably weaker than the dependence on the 
parameters of the n-th ((n-1)-th) cavity, and can be 
neglected, as a result. 

Quasi-static approach 
Let’s consider the simplest model of coupling cavities 

that is based on the quasi-static approach [3]. We shall 
consider the thickness of the disk to be zero and the radius 
of the hole to be small. Then the coupling coefficients will 
have the form  
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where ξ = 2/3πJ1
2(ρ01), ρ01 is the first root of the zero 

order Bessel function J0.  
To achieve the travelling wave mode in an 

inhomogeneous disk-loaded waveguide with the mode 
type ϕ = 2π /3 the parameters of (n-1)-th and n-th cavities 
should be connected via the relationship (it follows from 
Eqs. (2), (3)) 
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From (6) and (4)-(5) we can find 

( )nn Zbb 4115.00 ++=   (7) 

where b0 = cρ01 /ω*, 
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Suppose we have placed the n-th and (n-1)-th cavity 
into some sort of a cavity stack. It can be shown that the 
condition (6) is fulfilled in the case, when in the cavities, 
adjoining the cells under consideration, the amplitudes of 
E010 – modes equal to zero. Such cavity stacks have 
already been used for tuning separate parts of quasi-
constant impedance sections for LIL accelerator [4]. 
However, there the cells were tuned not consecutively, 

i.e. beginning from the entrance (or exit), but in different 
stacks being then simply joined one-to-one. 

Stability of tuning technique 
Our results [2] indicate that it is possible to use a 

consecutive tuning of all cells for disk-loaded waveguide 
with an arbitrary law of the coupling hole radius 
variation. With that, at the operating frequency ω = ω* the 
travelling wave mode with the phase shift of the order of 
2π /3 with a certain accuracy is guaranteed in a 
waveguide. 

Consequtive tuning feasibility is determined by the 
stability of this technique. Our numerical analysis show 
that small errors in the tuning of individual cells should 
not lead to the exponential growth of subsequent 
deviations, i.e. the technique is stable. 

RANDOM STRUCTURE 
Using such tuning technique we can consider 

accelerating structures with various laws of the hole 
radius variation, which will operate in a travelling wave 
mode at ω = ω*. 

We give the random deviations of the hole sizes in the 
constant impedance accelerating structure (a = 1.25 cm). 
The random sizes of the holes are uniformly distributed in 
the interval 1.25 ± 0.05 cm. The cavity radii and the 
parameters of the couplers are tuned depending on the 
hole sizes and operating frequency f* = 2.7972 GHz. The 
cavity radii are tuned according to the considered 
technique. The cavity length is d = λ/3. We tune the 
structure by such a way that the phase shift per cell equals 
2π /3. So, we can consider such structure as random – 
regular accelerating structure. 

Let's compare the random-regular accelerating structure 
with the constant impedance one, which already has been 
tuned according to the described above technique (see 
Fig. 1). 
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Figure 1: constant impedance structure - a) phase shift per 
cell; b) reflection coefficient R = P(-)/P0 versus the 
frequency. 
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In the random–regular structure the phase deviation 
from the phase shift per cell ϕ0 = 2π /3 is small – ≈ 0.5° 
and the amplitudes of electric field take strongly different 
values in various cells (see Fig. 2). The energy gain in 
such random – regular structure is even a bit greater then 
in constant impedance one. 

In the case of constant impedance structure reflection 
can arise only from the couplers within the passband (see 
Fig. 1b). Unlike the constant impedance structure, in the 
random–regular structure there is no pure traveling wave 
regime at the frequencies different from the operating one 
(see Fig. 3). 
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Figure 2: random (constant impedance) structure - 
a) phase shift per cell; b) amplitude distribution. 
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Figure 3: reflection coefficient R = P(-)/P0 in the random 
(constant impedance) structure versus the frequency. 

The constant gradient accelerating structure is more 
useful in comparison with the constant impedance one. 
The radii of the holes in the constant gradient structure 
decrease from entrance to exit. They decrease by the 
value 0.002 cm from cell to cell. We give the random 
deviations of the hole sizes in such constant gradient 
accelerating structure. As in the previous case, the 
random sizes of the holes are uniformly distributed in the 
interval ± 0.05 cm. The characteristics of such random–

regular accelerating structure are shown in figures 4 and 
5. 
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Figure 4: random (constant gradient) structure - a) phase 
shift per cell; b) amplitude distribution. 
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Figure 5: reflection coefficient R = P(-)/P0 in the random 
(constant gradient) structure versus the frequency. 

There is “detuning” of the first dipole passband in the 
considered random–regular structures. These structures 
can find application in high current accelerators and in the 
travelling wave klystron output circuits. 
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