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Abstract

During gold beam acceleration in the Relativistic Heavy
Ion Collider (RHIC), the transition energy has to be crossed
at γt ≈ 23. Since close to γt the longitudinal slip factor
γ−2

t − γ−2 becomes very small, the longitudinal momen-
tum compaction factor α1 becomes significant. Measure-
ments of this factor using longitudinal phase space tomog-
raphy will be reported.

INTRODUCTION

The Relativistic Heavy Ion Collider (RHIC) consists of
two superconducting storage rings, capable of accelerating
hadron beams from protons to fully stripped gold ions up
to energies of 100 GeV/nucleon in the case of gold. Ion
species other than protons have to cross transition energy
around γt = 23.2 during acceleration in RHIC, which is ac-
complished by a set of γt-quadrupoles equipped with spe-
cial power supplies that can switch the sign of the mag-
netic field within 30 msec, thus providing a γt jump of
∆γt = 1.0.
To mimimize longitudinal emittance blow-up during the γ t

jump due to bucket mismatch, a detailed undestanding of
the beam dynamics is required. Here we report an attempt
to measure the nonlinear momentum compaction factor α 1

using tomographic phase space reconstruction.

TOMOGRAPHIC PHASE SPACE
RECONSTRUCTION

To fully reconstruct the n-dimensional picture of an ob-
ject, tomography requires a set of n − 1-dimensional pro-
jections of this object, taken at different angles spanning
at least 180 degrees. In the case of tomographic recon-
struction of the longitudinal phase space in a storage ring,
this rotation is provided by phase space dynamics. How-
ever, this dynamics is not just a simple rotation of a rigid
object, but is intrinsically nonlinear with the rotation fre-
quency (synchrotron frequency) being a function of the
phase space amplitude. This difficulty can be overcome
by taking into account the exact equations of motion which
can be arbitrarily complex [1].
Taking the exact equations of motion, a set of test particels
launched on a regular grid in phase space are tracked and
sorted into Nbins bins that correspond to the binning of the
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measured profiles each time a longitudinal bunch profile i
was obtained by the wall current monitor. Each particle k is
therefore assigned a bin number N bin

i (k). Next, the num-
ber Npopulation

i,j of test particles in the jth bin at the time
the ith profile was taken is determined.
During the reconstruction process an intensity i is assigned
to each test particle by an iterative back-projection algo-
rithm according to the measured bunch profiles. This pro-
cess increases the intensity Ik of all test particles that fall
into a certain profile bin j at a specific time when the ith
profile was taken by

∆Ik:Nbin(k)=j =
1

NprofilesN
population
i,j

Nprofiles∑

i=0

hmeas
i,j , (1)

where hmeas
i,j is the measured profile height of the jth bin in

the ith profile, and Nprofiles is the total number of profiles
used for the reconstruction.
When this has been done for all profiles, the algorithm cal-
culates the projections of the resulting distribution that cor-
respond to the profiles measured by the wall current mon-
itor. The difference between measured and reconstructed
profiles is then iteratively back-projected.
The remaining discrepancy between measured and recon-
structed profiles after a fixed number of iterations is then
used as a quantitative measure of the quality of the recon-
struction, which allows for parameter fitting [1].

THE NONLINEAR MOMENTUM
COMPACTION FACTOR

The frequency-slip factor η which characterizes the
chromatic behavior in the longitudinal phase space is de-
fined as the relative change of revolution frequency ω per
unit change of the relative momentum δ = ∆p/p,

η = − 1
ωs

dω

dδ
. (2)

Here ωs denotes the revolution frequency of the syn-
chronous particle.
In general, the slip-factor η is a nonlinear function of δ,

η = η0 + η1δ + O(δ2), (3)

with [2]

η0 = α0 − 1
γ2

s

, (4)

η1 = 2α0α1 − 2η0α0 + 3
β2

2

γ2
s

, (5)
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where γs = (1 − β2
s )−1/2 is the Lorentz factor of the syn-

chronous particle, βs = vs/c, and α0 = 1/γ2
t .

In the vicinity of γt, 1/γ2
s = 1/γ2

t = α0, and therefore

η1 = 2
α1

γ2
t

+ 3
β2

s

γ2
t

. (6)

While the linear part η0 of the slip factor η changes sign
when the transition energy is crossed, the nonlinear contri-
bution η1 does not. This effect leads to bucket mismatch
at the transition jump unless α1 can be specifically chosen.
With βs = 1 for relativistic beams, the contribution of η1

vanishes for α1 = −3/2.

SIMULATIONS

To test the feasibility of measuring the nonlinear
momentum compaction factor α1 tomographically, sim-
ulations were performed. A set of 100000 particles with
gaussian distributions in phase φ and energy deviation
δ were tracked using the parameter setpoints as given
in Table 1. To potentially improve the convergence of
the subsequent parameter fit, a quadrupole oscillation
was induced by launching the particles with a delib-
erate bucket mismatch, namely σδ = 0.2 · δmax and
σφ = 0.1 · φmax = 0.1 · π, where δmax denotes the bucket
height. Projections (wall current monitor profiles) of the
evolving distribution were calculated every 125 turns.
First, a one-parameter fit for the nonlinear momentum
compaction factor α1 was performed, assuming all other
parameters as exactly known. As shown in Figure 1,
several local minima exist in the vicinity of the correct
value of α1 = 0.35, which may be explained by the limited
number of particles used to generate the profiles, and/or
the binning of those profile data. Smoothing the curve
shown in Figure 1 by regarding those small fluctuations
as some sort of noise results in a nonlinear momentum
compaction factor around α1 ≈ −0.8, which significantly
differs from the correct value.

In a second step, the profiles were used to reconstruct
the initial phase space distribution, simultaneously fitting
for three unknown parameters as it is required in the case
with measured data, the nonlinear momentum compaction
factor α1, the RF voltage URF, and the bin position of
the synchronous phase in the profiles using a simulated
annealing technique [3, 4].

The nonlinear momentum compaction factor was fitted
as α1 = 0.32 ± 0.14, where the error is taken as the rms
deviation form the average over several fitting runs with
different inital parameters. This showed that phase space
tomography together with simultaneous fitting of the three
unknown parameters may indeed be a feasible method
to measure the nonlinear momentum compaction factor α 1.

MEASUREMENTS

For the measurements, two RF voltage jumps were in-
troduced 1.0 sec and 0.5 sec before the transition jump to
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Figure 1: Remaining discrepancy as function of α1, using
simulated data. The RF voltage is set to the exact value
during this one-parameter fit.

γt 23.7647
γi 22.85775

dγ/dt 0.4556/sec
URF 145 kV
nharm 360

α1 0.35

Table 1: Parameter table for the simulation test. All param-
eters are set according to the situation in the “blue” RHIC
ring. α1 is chosen according to model calculations with
both chromaticities set to ξx,y = −2.

create some longitudinal quadrupole oscillation, as shown
in Figure 2. 50 profiles taken every 125 turns were used for
the α1 masurement, starting 0.1 seconds after the second
RF jump.
As in the simulation test, a simulated annealing technique

was applied to simultaneously fit for the three unknown
parameters α1, URF, and the position of the synchronous
phase in the wall current monitor profiles. The resulting
value for the nonlinear momentum compaction factor is
α1 = −1.37 ± 0.11, which significantly differs from the
value calculated by the model, α1 = 0.35.
This discrepancy may have several causes. First of all, to-
mographic phase space reconstruction may not be sensitive
enough to changes of α1 on the order of ±1. This explana-
tion is backed by a similar observation during the simula-
tion tests, where α1 was found with a similar discrepancy
during one-parameter fits.
A poor sensitivity of the resulting discrepancy to small
changes in α1 leads to additional problems during multi-
parameter fits. As Figure 3 shows, different values of α1

result in different local minima for different setpoints of
the RF voltage during the reconstruction. In the vicinity of
α1 ± 1, the remaining discrepancy is clearly dominated by
fluctuations, which may be interpreted as noise.

Finally, the nonlinear momentum compaction factor de-
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Figure 2: Measured bunch length with two RF voltage
jumps (at 1.0 sec and 1.5 sec, respectively) to induce a
quadrupole oscillation. The transition jump occurs at
2.0 sec, indicated by the minimum bunch length.
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Figure 3: Remaining discrepancy as function of α1 for dif-
ferent RF voltages. The red line corresponds to URF =
140 kV, the green one to URF = 145 kV, and the blue one
to URF = 150 kV.

pends on various machine parameters such as the chro-
maticity, as Figure 4 shows. Since the superconducting
RHIC dipoles have a non-negligible field-dependent sex-
tupole component, exact modeling of the machine is not
trivial. This sextupole component contributes to the chro-
maticity, leading to a different setting of the regular sex-
tupoles than in an ideal machine without sextupole contri-
butions from the dipoles. Furthermore, the sextupole com-
ponent of the dipoles also results in tune change due to on
overall radial orbit shift of about 1.3 mm, which in turn re-
quires adjustment of the tune quadrupoles to keep the tunes
at their target values [5]. All these corrections to the ideal

model contribute to changes in the nonlinear momentum
compaction factor.
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Figure 4: Nonlinear momentum compaction factor α 1 as
calculated from the model, for different chromaticities,
ξx = ξy.

CONCLUSION

An alternative approach to measuring the nonlinear mo-
mentum compaction factor α1 of RHIC has been made,
namely the use of tomographic reconstruction of the longi-
tudinal phase space. The discrepancies with the model may
be due to discrepancies between the model and the real ma-
chine itself as well as due to insufficient sensitivity of the
quality factor of those parameters fits to small changes in
α1.
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