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Abstract 
A general formulation of the linearly coupled rms 

emittances in two degrees of freedom is given.  This 
formulation shows clearly what can be done to the 
emittances and how best to design for the necessary 
coupling. 

NOTATION AND DEFINITIONS 
The phase point of the ith particle in a distribution 

(beam) is represented by a column vector 
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(The index i is often omitted as being understood.)  Its 
symplectic conjugate (a row vector) is defined as 
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where as shown S is the unit symplectic matrix.  The 
symplectic conjugate of a row vector such as X+ is 
defined as  

 ( ) XSXX −=≡ +++ . (3) 

For a distribution of phase points (particles) the second-
moment matrix is defined as the outer product 
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where a bar means averaging over the distribution.  We 
see immediately Tr(E) = 0 and E+ = -E.  We can 
parameterize E as 
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Matrix J is the Courant-Snyder “imaginary” unit matrix 
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We write the transfer matrix for the motion as 
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and define its symplectic conjugate as 
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Then ( )++M = M, and 

 MM+ = M+M = |M|I,      M+M+ = [Tr (M)]I. (9) 

If M+M = M+M = I, M is called symplectic and |M| = 1.   
The transformations given by M are 

 +++ == MXX,MXX TT  (10) 

and 
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Thus, the emittance is invariant for a symplectic 
transformation. 

The second-moment (rms) phase ellipse is defined as 

 1XEX 1 −=−+ , (12) 

where X (without index i) is now the running variable.  

Since 
E
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−  we can also write the ellipse 

as 

 EEXX =+  (13) 

or 
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We can diagonalize E-1 to get the area of the ellipse and 
show that 
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TWO DEGREES OF FREEDOM 
With two degrees of freedom (dof) we will write all 4-

dimensional (4-D) vectors and matrices in the “block 
form.”  The phase-point position vector is now  
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The symplectic conjugate is then 
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As before, 
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For a distribution, the second-moment matrix is 
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where E and F retain their 1-dof forms and the coupling 
block is 
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The projection of all the phase points on the, say, X-plane 
will have a distribution given simply by Xi, hence the 
“projection” rms emittance and second-moment ellipse 
are as given in Eqs. (6) and (13). 

We can define the 4-D second-moment “ellipsoid” 
(bounded by a closed 3-D surface) as 
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In block form we have 
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The equation of the “ellipsoid” in block form is then 

 X+AX - X+C+Y + Y+CX + Y+BY = -e. (24) 

The Liouville invariant is defined as  
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but has nothing to do with emittances.  The “projection” 
ellipses are the projections of the ellipsoid on the X and Y 
planes, and their areas are related to the “projection” 
emittances as before. 

PROPOGATION OF EMITTANCES 
AND INVARIANTS 

The linearly coupled 2-dof motion is given by a transfer 
matrix 
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Thus, 
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� is symplectic if 

 ��+ = �+� = I. (29) 

This gives in terms of the block matrices 
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The propagated (transformed) second-moment matrix is 
then 
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This gives in block form 
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where we have defined κ≡K  as the “couplance.”  (Note 

that |K| is not always �����	����������
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Equations (34) show directly  
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a well-known invariant for symplectic transformations. 
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EXAMPLES OF APPLICATION 
There are two classes of x-y coupled beam transports—

the skew quadrupole train and the solenoid. 

Class 1  Skew Quadrupole Train 
This is a case of symplectic “deformation” propagation.  

The transfer matrix is 
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where P and Q are the principal 2-D transfer matrices 
along the quadrupole axes and the end matrices rotate the 
quadrupole train 45°.  In this case 
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We parameterize the symplectic matrix P+Q as 

 P+Q ���	�φ + Jsin2φ, (39) 

then 
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Substituting Eqs. (40) in Eqs. (34) we get the transformed 
emittances. 

Class 2A  Solenoid – Whole 
The transport through a whole solenoid (from exterior 

to exterior where the vector potential is zero) is a 
symplectic “rotation.”  The transfer matrix is 
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and Bz and �  are the solenoid field and length and Bρ is 
the rigidity of the beam.  This gives 
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Compared to Eqs. (40) we see that J is here replaced by I.  
This distinguishes the “deformation” of a skew-
quadrupole train from the “rotation” of a solenoid. 

Class 2B  Solenoid – Ends 
The only easily available nonsymplectic case is when 

either (or both) end of the transport is in the interior of the 
solenoid where the transverse vector potential .0A ≠⊥   

We give here the thin “entry” of a solenoid.  The transfer 
matrix is 
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In this case we have to go back to the general 
(nonsymplectic) formulas in Eqs. (33).  We have |M| = |N| 
= 1 and |m| = |n| = 0.  For the emittances Eqs. (33) give 
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This shows the noninvariance of 
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The “exit” is identical to the “entry” except with the sign 
of k reversed. 

With these three classes of transport one should be able 
to obtain most desired emittance transformations.  If, 
indeed, there is a transformation that cannot be obtained 
from combinations of these cases (plus uncoupled 
transports), some yet unknown coupled transports must be 
invented. 

THREE DEGREES OF FREEDOM 
For 3-dof the phase-point position is given by a 1×3 

block vector.  The second-moment matrix and the transfer 
matrix are both 3×3=9 block matrices.  The inverse 
second-moment matrix and the conditions for 
symplecticity are more complex than the 2-dof case, but 
can be given in a straightforward manner.   
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