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LINEAR COUPLING OF RMSEMITTANCES*

L.C. Teng”, Argonne National Laboratory, Argonne, IL 60439 USA

Abstract

A genera formulation of the linearly coupled rms
emittances in two degrees of freedom is given. This
formulation shows clearly what can be done to the
emittances and how best to design for the necessary
coupling.

NOTATION AND DEFINITIONS

The phase point of the i particle in a distribution
(beam) is represented by a column vector

xi=Hod ®
[
(The index i is often omitted as being understood.) Its
symplectic conjugate (arow vector) is defined as
*=XS=(x x')g _;%(x'—x), @)
where as shown S is the unit symplectic matrix. The

symplectic conjugate of a row vector such as X" is
defined as
(x*) =sx* =- €)

For adistribution of phase points (particles) the second-
moment matrix is defined as the outer product

_gxd x*f
B_X,z xx'H
where a bar means averaging over the distribution. We

see immediately Tr(E) = 0 and E* = -E.  We can
parameterize E as

E:sHa BEE&].
y —d

Matrix J is the Courant-Snyder “imaginary” unit matrix

E=-XX* 4

©)

with |9 = 1 and * = -I. The rms emittance ¢ is then given
by
g? =|E| =x* x? XX (6)
We write the transfer matrix for the motion as
b
M= 7
S ™
and define its symplectic conjugate as
~ ~ d -b
M*=SMS= H E (8)
c a
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Then (M*) =M, and
MM*=M*M=[M[l,  M+M*=[Tr(M)]I.  (9)

If M =M*M =1, M iscaled symplectic and [M| = 1.
The transformations given by M are

Xt =MX, Xi=X"MT (10

and
Er =MEM*, € =|E{|=|M[?e?. (1)
Thus, the emittance is invariant for a symplectic

transformation.
The second-moment (rms) phase ellipseis defined as

XTEIX =-1, (12)
where X (without index i) is now the running variable.
Since E™ = |E|+ :% we can also write the ellipse
as

X "EX =|g| 13
or
XFIX = yx? + 20xx’ +Px'? = (14)

We can diagonalize E™ to get the area of the ellipse and
show that

1
= |E[2 :l(areaofenipse). (15)
T

TWO DEGREES OF FREEDOM

With two degrees of freedom (dof) we will write al 4-
dimensional (4-D) vectors and matrices in the “block
form.” The phase-point position vector is now

|
[
|

% B ‘ (16)
I
s
The symplectic conjugate is then
\?) E QH: (><+ (17)
S
As before,
0K *
x*)' Eg S%;E:—x (18)

For adistribution, the second-moment matrix is
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E=-XXx" _H‘XX

— + E K
o HE% e
Hyx* —yy*H K" F
where E and F retain their 1-dof forms and the coupling
block is

=-xy* :@rﬂ QE Tr(K)z0. (20)
X'y x'y

The projection of all the phase points on the, say, X-plane

will have a distribution given simply by X;, hence the

“projection” rms emittance and second-moment ellipse

areasgivenin Egs. (6) and (13).

We can define the 4-D second-moment “ellipsoid”
(bounded by a closed 3-D surface) as
X'EIX=-1. (21)
In block form we have
N
E‘lzéﬁ "(B: E (22)
where
DA =|HE" +KFK* =-A"
=|[gF" +K'EK =-B* (23)
%::|K|K+ +FK'E
and
Al B |C
_H:H_%:Hq ||<| +Tr(EKFK )

The equation of the “ellipsoid” in block formis then
X*AX -X'CY +Y'CX +Y'BY = -e.
The Liouville invariant is defined as

(24)

1
“=[Ez = % (4-D volume of the ellipsoid) (25)

but has nothing to do with emittances. The “projection”
ellipses are the projections of the ellipsoid on the X and Y
planes, and their areas are related to the “projection”
emittances as before.

PROPOGATION OF EMITTANCES
AND INVARIANTS

The linearly coupled 2-dof motion is given by atransfer

matrix
m
M=
SN

The symplectic conjugate of M is defined as

o 1 5

Thus,

(26)

r_]+
N+E (27)
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(M*) =m. (28)
M issymplectic if
MM =M'M=1. (29
This givesin terms of the block matrices
M| =[N M
=N = M=t
En*M+N*n=0

The propagated (transformed) second-moment matrix is
then

Er=MEM". (31)
Thisgivesin block form
CEr =MEM ™ +mFm*™ + MKm* -mK*M*
T =NFN* +nEn* -NK"n* +nkKN* (32
§<T =MKN* -mK*n* +MEn" +mFN"*
which then gives
ir =[Ev| =M +jmi ey + 2mmic
. — 2M[Tr(EKm*M )~ 2m/Tr(KFm* M)
E —Tr(EM+mFm+M)—Tr(Km+MKm+M
%)2” =|F| :|N|Zg§ +|n|28)2( +2IN||n[x
% ~ 2n{Tr(EKN *n)-2N[Tr{KFN 1) (33
E —Tr(En+NFN+n)—Tr(KN+nKN+n)
Ok =[Kr| =Ml + [N mleg +(MN|+ |min{)e
E —|M|Tr(EKN+n)—|m|Tr(KFN+n)
E —|n|Tr(EKm+|v|)—|N|Tr(KFm+|v|)
= —Tr(En+NFm+M)—Tr(KN+nKm+M)

where we have defined |K| =k asthe “couplance.” (Note
that |K|isnot always> 0 as are |E| and [F)|.)

If M is symplectic, Egs. (33) are smplified by Egs.
(30) to

2 —|M| +|m|285 +2M|mjk -2M[a-2mb+c
E;§T =|m%e2 +|M|?€2 + 2M|mk + 2mla+ 2M[b+c, (34)
er = ol s i3 +3)s v -mla-5)-c
where
BéET r(EKW) W=m*M
th=Tr(KFW) (35)
Ep——Tr(EW FW) Tr(KWKWwW)

Equations (34) show directly
g4t +E5r + 2Ky =€% +€] + 2k, (36)

awell-known invariant for symplectic transformations.
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EXAMPLES OFAPPLICATION
There are two classes of x-y coupled beam transports—
the skew quadrupole train and the solenoid.
Class1 Skew Quadrupole Train

Thisis a case of symplectic “deformation” propagation.
The transfer matrix is

Bcos— —IsmE IcosE IsinEH
M =0 4 4 4
@sm— IcosE IsinE Icosﬂﬁ
4 4 4
P
"_gg P+CQ) 30

where P and Q are the principal 2-D transfer matrices
along the quadrupole axes and the end matrices rotate the
quadrupole train 45°. In this case

Hm|:1||3 Q|—— ——TrP QE . (39)
0 4
O . 1
@N:m M ( Q XP+Q):—(P Q-Q P)
We parameterize the symplectic matrix P'Q as
P'Q = cos2¢ + Jsin2¢, (39)

then

%M| cos? @, |m| = sin? g “0)

AW =m*M = (sin gcosp)J
Substituting Egs. (40) in Egs. (34) we get the transformed
emittances.
Class 2A Solenoid —Whole

The transport through a whole solenoid (from exterior
to exterior where the vector potential is zero) is a
symplectic “rotation.” The transfer matrix is

_ HR CO.SLIJ RsimuE (41)
Rsiny Rcosy
with the 2-D
1.
E@ cosy ESIHLJJ% (42)
rksny cosy
where

_HLB [ _
Lp:%Bp%_k/’

and B, and ¢ are the solenoid field and length and Bp is
therigidity of the beam. Thisgives

2897

%M| =cos’y, |m[=sin®y

AW =m*M = (snycosy) |
Compared to Egs. (40) we see that Jis here replaced by I.
This distinguishes the “deformation” of a skew-
quadrupole train from the “rotation” of a solenoid.
Class 2B Solenoid — Ends

The only easily available nonsymplectic case is when
either (or both) end of the transport isin the interior of the
solenoid where the transverse vector potential A # 0.

We give here the thin “entry” of a solenoid. The transfer

matrix is
OE. (44)

CS)

M=N=1I m:—m+:n+:—n:§
0

In this case we have to go back to the general

(nonsymplectic) formulas in Egs. (33). We have [M| = [N]
=1land|m|=|n|=0. For the emittances Egs. (33) give
2 =¢2 +2a+c
[gyT :ey +2b+c, (45)
%T =k+a+b+c
where
E]a: Tr(EKm k@( X'y - xyxxﬁ
O
H):—Tr(KFm M :—kﬁ/ xy' xyyyﬁ
O
e =-TrlEM*mFm “M)-Tr{km*MKm*M) (46)
0 2[ 2,2 752
=k §< -X
H y y

This shows the noninvariance of
ggr +eor +2Kk7 =€5 +e5 + 2k +4(a+b+c). (47)

The “exit” is identical to the “entry” except with the sign
of k reversed.

With these three classes of transport one should be able
to obtain most desired emittance transformations. If,
indeed, there is a transformation that cannot be obtained
from combinations of these cases (plus uncoupled
transports), some yet unknown coupled transports must be
invented.

THREE DEGREES OF FREEDOM

For 3-dof the phase-point position is given by a 1x3
block vector. The second-moment matrix and the transfer
matrix are both 3x3=9 block matrices. The inverse
second-moment matrix and the conditions for
symplecticity are more complex than the 2-dof case, but
can be given in a straightforward manner.



