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Abstract

A numerical method of simulating electron beam shot
noise in free electron lasers is presented. The method uses
a quasi-uniform phase space distribution of appropriately
charge weighted macroparticles. The statistical properties
of the macroparticles are derived directly from the tempo-
ral Poisson statistical properties of the real electron dis-
tribution. Unlike previous methods, our method does not
rely upon any averaging over a resonant radiation period
timescale and so more correctly describes the underlying
physics. The method also allows shot noise to be mod-
elled self-consistently in un-averaged FEL models which
are able to describe sub-wavelength phenomena such as
Coherent Spontaneous Emission.

INTRODUCTION

Any computer code that attempts to model Self Ampli-
fied Spontaneous Emission in a FEL, or any other electron
beam source, should have a valid numerical model of the
electron beam shot-noise. In order to model shot-noise,
a macroparticle distribution should simulate the statistical
properties of the real electron distribution. Many, if not
most simulation codes use the algorithm of [1] as the basis
of their macroparticle loading algorithm to describe shot-
noise. However, this algorithm, although effective, has
been derived directly from the statistical properties of an
averaged quantity, b, the bunching parameter [2]. This av-
eraging occurs over a resonant radiation period. There has
not been, to the authors’ knowledge, a contiguous deriva-
tion from the statistical properties of the individual elec-
trons in an electron beam to the algorithm of [1]. A noise
model derived directly from the properties of the individual
electrons would also allow the introduction of shot-noise
into FEL models that have not been averaged over a radia-
tion period in a consistent way. Although the method of [1]
has been used in unaveraged models such as [3] it cannot
be considered consistent to use methods developed from
averaged equations in an unaveraged model. The work
presented here derives such a macroparticle model directly
from a Poisson statistical electron distribution [4].

THE MODEL

The arrival of electrons at the beginning of an interac-
tion region, z = 0, is assumed to be a Poisson process.
We first discretise time into small intervals of uniform du-
ration ∆t so that tn = n∆t where n = 0,±1,±2, .... In
the notation hereafter subscript n always refers to these dis-
crete times. It will be seen that the time interval ∆t is the
mean interval between macroparticles introduced to model
the real electron distribution. Furthermore, ∆t is small with
respect to any radiation period to be subsequently modelled
i.e. ∆t � 2π/ωmax.

Consider the arrival of electrons over one such time in-
terval tn ≤ t < tn+1. The mean rate of the Poisson pro-
cess is the rate of electron arrival νn = I(tn)/e which is
assumed constant over the interval ∆t. The electron arrival
times obey Poisson statistics and the number of electrons,
Nn, arriving within the interval ∆t is a statistical variable
determined by the Poisson distribution:

P (Nn) =
N̄Nn

n e−N̄n

Nn!
(1)

where N̄n = νn∆t, is the expectation for the number of
electrons in the interval ∆t. It can been shown [5] that the
ordered arrival times of the electrons have identical statis-
tical properties to those with unordered arrival times each
of which have been distributed within the interval ∆t with
an identical uniform probability density pn = νn/N̄n =
1/∆t. The statistics of variables distributed with uniform
probability density over a finite interval are well known [7],
from which we obtain the mean and variance of each of the
unordered electron arrival times tj , j = 1..Nn to be

µn = tn + ∆t/2 and
σ2

n = ∆t2/12 (2)

respectively.
For a total of Nn electrons the mean arrival time is given

by

t̄n =
1

Nn

Nn∑

j=1

tj

with expectation and variance of t̄n easily shown to be

E(t̄n) = µ̄n = µn; and

V (t̄n) = σ̄2
n =

σ2
n

Nn
=

∆t2

12Nn
(3)
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respectively.
The distribution of the Nn electrons within the interval

tn ≤ ∆t ≤ tn+1 may now be modelled by replacing the
distribution with a single macroparticle whose statistical
properties of charge and temporal distribution equal those
of the Nn electrons. This is the physical basis of the model
presented here.

The statistical properties of the macroparticle charge are
given simply by the Poisson distribution (1). When load-
ing the macroparticles in a numerical simulation code each
would be assigned a charge weight of Qn = Nne where
e is the charge of an electron and Nn, the macroparticle
electron number, would be generated by a Poisson random
deviate generator of mean N̄n.

The statistical properties of the macroparticle arrival
time may be found by firstly placing the macroparticle at
the mean electron distribution arrival time µ̄n. This mean
arrival time then has added to it an independent random
variable τ with uniform probability distribution over the
interval [−δt/2, δt/2]. The interval δt is chosen so that
the variance in the macroparticle arrival time is equal to
that of the real electron distribution (3). Similarly to rela-
tion (2) the variance for the macroparticle arrival time is
δt2/12. Equating this macroparticle variance to that of the
real electron distribution (3) the following relation for δt is
obtained

δt =
∆t√
Nn

≈ ∆t√
N̄n

(4)

where the latter approximation may be used when N̄n � 1.
An electron pulse defined by a mean current I(z, t) may

be modelled to include the effects of shot-noise by assign-
ing macroparticles, with charge and arrival time as de-
scribed above, over many such consecutive time intervals
defined by tn. The macroparticle arrival times describing
the complete electron pulse may then be written as

tj = t̄j + τj , j = 1..Nm (5)

where Nm is the total number of macroparticles and the
j = 1 macroparticle arrives in the nth time interval so that
t̄j = tn+(j−1/2)∆t. For consistency, the Poisson variate
Nn, the electron number for the jth macroparticle, is now
written Nj .

It is important to note that the electron distribution and
its statistics have been modelled by the macroparticles
without reference to any external lengths or timescales such
as a resonant radiation frequency or its harmonics. In this
sense this analysis is self-consistent.

BUNCHING STATISTICS IN 1-D

The following scaled form of the 1-D wave equation de-
scribing the FEL interaction may be derived:

(
∂

∂z̄
+

∂

∂z̄1

)
A(z̄, z̄1) =

1
n̄p‖

N∑

j=1

exp
(
−i

z̄1

2ρ

)
δ(z̄1−z̄1j).

(6)

Details of the scaling may be found in [6]. The right hand
side of the wave equation is written in terms of the real elec-
tron distribution, where N is the total number of electrons
in the electron pulse and at the beginning of the interaction
region, z = 0, so that z̄1 = −2ρωt where ρ is the FEL scal-
ing parameter [2]. Note that the total number of electrons
in the electron pulse, N , is itself a Poisson variate of mean
N̄ , the expectation value of the total electron number given
by

N̄ =
∫ ∞

−∞

I(t)
e

dt. (7)

The Dirac delta function transforms to real units as

δ(z̄1 − z̄1j) =
δ(ωt − ωtj)

2ρ
. (8)

and the electron distribution may be replaced by a
macroparticle distribution as described in the previous sec-
tion to give the right hand side of the wave equation (6) in
terms of the macroparticle distribution

2π

Nmλ

Nm∑

j=1

Nj

N̄pk
eiωtδ(ωt − ωtj) (9)

where Nmλ = 2π/ω∆t is the number of macroparticles
within one radiation period and N̄pk = Ipk∆t/e is the ex-
pectation of the macroparticle electron number at the peak
of the electron pulse current, Ipk.

When averaged over a radiation period the right hand
side of the wave equation yields a quantity known as the
‘bunching parameter’ [2]. If the macroparticle model is
valid then the statistics of the bunching parameter must
be the same for the macroparticle distribution as for a real
electron distribution, and we now test for this.

Averaging (9) by integrating over one radiation period
centred at time t yields an expression for the localised
macroparticle bunching parameter:

b(t) =
1

Nmλ

Nmλ∑

j=1

Nj

N̄pk
eiωτj eiωt̄j . (10)

The delta function has extracted those macroparticles
within the interval (we retain j as the index for simplicity)
and we have used relation (5).

The expectation of the bunching parameter (10) is then
given as

E(b) =
1

Nmλ

Nmλ∑

j=1

ENj

(
Nj

N̄pk
ENj |τj

(
eiωτj

))
eiωt̄j

(11)
where ENj (...) signifies the expectation value with respect
to the macroparticle electron number Nj and ENj |τj

(...)
signifies the expectation value with respect to the random-
ness of the macroparticle arrival time τj for a given value
Nj . The latter expectation is obtained by averaging in
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τj over the interval [−δt/2, δt/2] from which using rela-
tion (4) the following result is obtained:

Eτj |Nj

(
eiωτj

)
=

√
NjNmλ

π
sin

(
π√

NjNmλ

)
. (12)

Substituting for (12) into (11), using the result that for a
Poisson distribution ENj (Nj) = N̄j and assuming the usu-
ally easily satisfied condition

√
NjNmλ � 1 so that

sin

(
π√

NjNmλ

)
≈ π√

NjNmλ

,

the expression for the expectation of the bunching is

E(b) =
1

Nmλ

Nmλ∑

j=1

N̄j

N̄pk
eiωt̄j . (13)

A similar but more lengthy analysis for the expectation
of |b|2 may also be carried out to obtain

E
(
|b|2

)
=

1
N2

mλN̄2
pk

Nmλ∑

j=1

N̄j + |E (b)|2 (14)

from which an expression for the variance of the bunching,
V (b) = E(|b|2) − |E(b)|2, is obtained.

It can be seen from (13) for the expression for E(b) that
if the current is not uniform over the radiation period, i.e.
N̄j �= constant ∀ j, then E(b) will be non zero. Such non-
zero bunching is caused by a current gradient and is the
source of Coherent Spontaneous Emission [6].

In the limit of a uniform current beam we may set
N̄j = N̄pk ∀ j, E(b) = 0 and there is no CSE. In this case
N̄mλN̄pk = N̄λ, the expectation of the total number of
electrons in the radiation period, and we obtain from (14)
the result that E(|b|2) = 1/N̄λ, which for the single ra-
diation period under consideration here, is in agreement
with previous analysis of averaged Poisson statistical mod-
els [4].

HIGHER DIMENSIONS

In the above analysis, electron beam properties such as
energy and transverse momentum spread were neglected.
In order to describe these effects and include the effects of
shot-noise, the above model must be extended to a multi-
dimensional electron phase space.

Phase space is first discretised into elemental ‘volumes’
by discretising along each phase space ordinate in a method
similar to that carried out for time in the previous section.
The populating by electrons of each phase space ‘volume
element’ at z = 0 is then assumed to be a Poisson process
with each element being populated at a local Poisson rate
given by

ν(α, t) =
I(t)
e

f(α) (15)

where α is a generalised phase space coordinate (e.g. α =
(r⊥,p), the transverse coordinate and the momentum re-
spectively) and f(α) is a normalised distribution function.
Note that, in general, the distribution function itself may
have a temporal dependence via α.

The same algorithm as was used for allocating the
temporal noise of the previous section is now used for
each phase space coordinate of the macroparticles. The
macroparticles are placed at the ‘centre’ of each phase
space volume element and have added to each of their
phase space coordinates an independent random variable
of uniform probability distribution. This random variable
is equivalent to the τj of the previous section and, for a
generalised ordinate αk, will have a range

[
− ∆αk

2
√

N̄j

,
∆αk

2
√

N̄j

]
(16)

where ∆αk is the discretisation interval and from (15)

N̄j = ν(α, t)∆Vα∆t =
I(t)
e

f(α)∆Vα∆t (17)

where ∆Vα =
∏

k (∆αk) is the elemental phase space vol-
ume. Each macroparticle will also have assigned to it a
Poisson random variate electron number of mean N̄j .

CONCLUSIONS

The derivation of the shot-noise model presented here
is perhaps more physically intuitive, and therefore appeal-
ing, than those used in current FEL simulation codes: The
macroparticle properties of arrival time and charge are de-
rived directly from the intrinsic Poisson statistical proper-
ties of the individual electron arrival times at the beginning
of the interaction region. The model is therefore indepen-
dent of any external factors such as a resonant radiation
period. The algorithm has been tested successfully in a nu-
merical code and these results will be presented in a forth-
coming publication.

REFERENCES

[1] C. Penman and B.W.J. McNeil, Opt. Commun. 90, 82,
(1992)

[2] R. Bonifacio, C. Pelligrini and L.M. Narducci, Opt. Com-
mun. 50, 373, (1984)

[3] B.W.J. McNeil and G.R.M. Robb, Phys. Rev. E 65, 046503,
(2002); 66, 059902(E), (2002)

[4] B.W.J. McNeil and G.R.M. Robb, J. Phys. D 30, 567,
(1997); 31, 371(E), (1998)

[5] W.B. Davenport Probability and Random Processes (Lon-
don: McGraw-Hill, 1970)

[6] B.W.J. McNeil, G.R.M. Robb and D.A. Jaroszynski, Opt.
Commun. 165, 65, (1999)

[7] John E. Freund Mathematical Statistics (2nd Edition), (Lon-
don: Prentice/Hall, 1972)

952

Proceedings of the 2003 Particle Accelerator Conference


