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Abstract

Radially polarized radiation is amplified by a free
electron laser (FEL) in which the undulator is an ion
channel with periodic density. To ensure stable beam
propagation, the undulator period is much shorter than the
betatron wavelength. The gain at a given distance from
the axis equals that of a planar magnetostatic undulator
with the same quiver velocity. When an ultrarelativistic
electron beam propagates in a periodic ion density of
10"-10" cm™, a short-wavelength FEL may be obtained.

1INTRODUCTION

When a round electron beam propagates in an ion
channel whose density varies periodically [1], the
electrons undergo forced radial oscillations in addition to
damped betatron oscillations [2]. A periodic ion channel
undulator may be created by ionizing a periodic gas
density [1] or by using a modulated ion beam [2, 3], and
may have application as an FEL [4].

A periodic ion channel FEL is similar to a non-periodic
ion channel laser [5, 6] in that no magnetic field is
required, while benefiting from forced transverse
oscillations similar to those in a magnetostatic undulator
FEL with ion channel guiding [7, 8, 9]. In contrast to an
ion ripple laser where oblique propagation through a
periodic ion density causes a periodic beam deflection
[10], we consider propagation in the direction of the
periodic density gradient. In this case, lasing results from
periodic focusing rather than a periodic beam deflection.

We calculate amplification of aradially polarized wave
by a periodic ion channel FEL for a cold beam in the low-
gain-per-pass limit. To ensure stable beam propagation,
we consider the case where the undulator period is much
shorter than the betatron wavelength [2,11].

2 RADIAL MOTION

To model “force” bunching [6], radiation is included in
the transverse dynamics. We consider an undulator, in
which an electron’s velocity deviates by less than the
angle 1/By from the axis, where y is the beam’ s relativistic
factor and B > 0 is the beam velocity divided by the speed
of light c. In an undulator, the electron motion is non-
relativistic in the frame of reference moving with the
beam as it enters the undulator, so we calculate the
dynamics in this frame, which is related to the laboratory
frame by y; and (3.

Consider a periodic ion channel undulator with entrance
at z4, = 0, whose density is given in the laboratory frame
(i.e., the frame where ions are stationary) for z, > 0 by
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M e (T Ziab) = Noojan(F) + Mijan (1) C0S(KyyjapZian) » (1)
where z4, and r are axial and radia coordinates, while
Kyiab >0 is the undulator wave number equaling 21t
divided by the undulator period Ay When the
undulator period greatly exceeds the beam radius, the
ions' electric field in the laboratory is mostly radial [1],
gven by Gausss law in S units as

(‘E/ZTEVEO)_[;Q—lab(r'yZ|ab)275r'dr" where e < 0 is the

electron charge and &, is the permittivity of free space. In
the frame moving with the beam’s axial velocity as it
enters the undulator, the radia electric field from the ion
channel isincreased by the factor y; [12], giving [2]

EW(r,z,t) = (— e/ 2Tl]’£o)
X[I;m(r')ZW’dr' + L:nl(r')an'dr’cos(lgNz+ oth)} .

Here, z is the axia coordinate, ny(r) = ViNoan(r), Mi(r) =
Yinziap(r), Kw = YiKalan and @y = VjBjckyian. The magnetic
field in the e-beam frame is in the azimuthal (¢) direction,
with @-component B,, = —-B|E,/c. The axia electric field
in the beam frame equals that in the laboratory; it is
therefore negligible for y; >> 1.

For a radialy polarized wave traveling forward, the
radial electric field in the low-gain-per-passlimitis

Er(r,Z,t):EO(I‘)COS(er—Q)rt+(pr) ©)
The azimuthal magnetic field B, equals E, /c, with wave
number k, > 0, phase ¢, and frequency w = ck. > 0.

The radial electron motion consists of forced
oscillations from the undulator and radiation E-fields, in
addition to damped betatron oscillations from mismatched
injection [2]. For brevity, we will suppress the
dependence of functions upon r in our notation. In the
case where the undulator period is short compared to the
betatron wavelength [w, >> oy = (neee,m)Y?, where mis
the electron mass|, we consider a small injection
mismatch so that betatron oscillations are negligible. The
radial velocity of an electron at radius r with constant
axial velocity << cisthe sum of an undulation with quiver
velocity [2]

@

Viu(z.t) = -4,csin(k,z+ w,t), 4
and aforced oscillation from the radiation
v (zt)=acsin(kz-wt+q). (5)
Here, &, obeys
2 2
5 = e(nyr (M) ©)

T 2emac 26,MBC7Kyoap
with <n1>5(1/”2)[(:“1“')2”'*' (and similarly for

< Nyiap>), While &, = —eE,/mcwy. Since ky = w,/Byc in
eg. (4), the undulation wavelength in the laboratory is
independent of the electron’s axial velocity.
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Any axia velocity function may be approximated to
arbitrary accuracy by constant-velocity segments, so that
egs. (4)—6) also apply when the axial velocity is not
constant. Since v,, = 0 at the undulator entrance, a
matched beam has 3 = By andy =y;. Our assumption of
nonrelativistic electron velocities in the beam frame
requires a,, << 1.

3AXIAL MOTION

To describe “inertial” bunching, radiation isincluded in
the axial dynamics [6]. An electron whose initial axial
position zis 0 and radiusisr obeys, to lowest order in the
radiation field

2

d—ZZ:EVWBW+EVWBr +2v B, (7)

dtz m m m
where radius = r on the right hand side (RHS). The
solution with initial conditions z(0) = dz/dt(0) = O is the
sum of three functions describing radiation-independent
axial motion, inertial bunching, and force bunching. The
radiation-independent motion obeys d?z, /dt % = (e/m)v,, B,
where z = v,t on the RHS of the equation, with v,
equaling the average axial velocity in the undulator. The
solution with initial conditions z,(0) = dz,/dt(0) = 0 is
B (no)(sinéa,t )

= . (8
2me 6,2 | + <%> (sin2dy,t - 2@,t)

where &, =, (L+v, /Bc) is the undulator frequency

experienced by an electron with axia velocity v,.
Equation (8) gives the average axial velocity as

v = _éWZBC(H“(”o)] ©
4 0 (m)

The inertial bunching term [6] results from the axial

radiation force on an electron, obeying d?z/dt? =

(e/mv,, B, where z = z,(t) on the RHS. For 4, <<1,

approximating z,(t) = v, t on the RHS for the fundamental
FEL mode gives the solution with initial conditions z (0)
=dz /dt(0) = 0:

sin(u)+t —(pr)+sin<pr - w,tcosq,
2

2= o (10
m | sin(w.t+@)-sing —w_tcosq

+ "
where w, =@, +® ad w_=&,-&,, in which

& =, (1-v, /c) is the radiation frequency experienced
by an electron with axial velocity v,. Since the
undulation wavelength in the laboratory is independent of
the electron’s axial velocity, the inertial bunching is also
called “axial” bunching [6].

The force bunching term [6] results from the transverse
radiation force on an electron, obeying d?z/dt? =
(e/myv, B,, where z = z,(t) on the RHS. For 4, <<1,
approximating z,(t) = v, t on the RHS for the fundamental

FEL mode gives the solution with initial conditions z (0)
=dz/dt(0) = 0:
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~

2<n0>[S| n(a)rt - ¢

+sing, —(I)rtcoscpr]
2

&
2 )=BEa |, (n)sin(w,t - )+sing, -w,tcosq ]| (11)
amg, (,o+2
_(n)lsin(w.t + @ )-sing, - w.tcosq]
2
w.

For effective amplification of radiation, a. << w,, so that

z(t) = 7 (), _ A,E,| sin(wt+@)-sing -wtcosq |
By 2m 0.2

(12)
Because the undulator field is periodic, the inertial
bunching and force bunching are nearly equal for an
ultrarelativistic e-beam when . << w. .

4 GAIN

The change in an electron’s energy from interaction
with the radiation obeys
d
Ff = e\ll' EI’ + e‘/WEI’ (13)
where v;, v, and E, are evaluated at radiusr and the axial
position z(t) calculated in the previous section. The
change in an average electron’s energy is given by
averaging over the phase of the radiation @. To order
E/2, the first term on the RHS does not contribute to this
average, so that for &,°(1+8<ny >/<n, >)<<8

(de/dt) :(evWEr)(pr =

&

@

(zcosq,) k, cose_t + K_ cosw,t )} (14)

@

+(zsin<pr)(pr [eaWTCEO(kJ,sinw_t—k_sinw,rt)}
where k, =k, +k, and k_ =k, -k, . Equation (12) gives

(a+ B(*Z"/wrz)eé""% (sinw.t-aw.t)
me_

(zcosg, ), =
# A (15)
%(COS(D t —l)
4mw_? i
wherefor B = 1, 1+Bw,/wy = 2/(1+vy/C).

Let Ae EIJ(dg/dt)(p dt be the average energy change
r

(zsin(pr>(pr =

per electron from interacting with radiation. Here, T is
the undulator transit time, obeying @,T=2mN with

integer or half-integer N equaling the number of undulator
periods. For ca << w,and y>> 1, egs. (14) and (15) give

_e2F 25 2 3(5_ _ .
A= e“E,"a, ¢k, T [2 2cosw_T ooTsmwTJ. (16)

am(L+v,/c) w°T®
In the beam frame, the number of electrons passing
through the undulator within a transverse area A, during a
time t, is neAJct,, SO that the energy transferred to the
forward wave is —n.ActAe, where n, is the electron
density. The time-averaged Poynting vector of the
radiation is < S> = g,cE,%/2, with energy density < S>/c.
Since the relative velocity between the forward wave and
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undulator is (1+p)c, the electromagnetic energy passing
through the undulator is (<S>/c)(1+B)ct,A,.  The
radiation energy gain per pass at radiusr therefore obeys
__ —n,Afct,Ae (—2[3] neAe 17)
gan=-—3 >+ = — .
(S)N1+B)tA,  \1+B)e,E,
Equations (16) and (17) givefor y>>1
_ ek, 3T [2-2cosw T -0 TsinwT | (18)
4me, (1+v,/c) w °T®
In the laboratory frame, the maximum transverse
velocity divided by c is obtained from the radial and axial
velocities in the beam frame when |v,, | is largest:
_ ay
B _ =W = — (19)
TR - @S2 2 )]
where a,, isthe wiggler parameter. The gain at radiusr is
given to lowest order in the wiggler parameter a,, as

gain

Nectat €Wtz A Liap- | 2= 2€0SW.T —w_Tsinw.T (20)
2me cy? (T)
where ng g, is the e-beam density, wyjap = BCkyap IS the
angular frequency of electron undulations, and L, is the
undulator length measured in the laboratory frame. Here,
WO.T = [Kyiap L+ Vo /C)— ke ap(1-V, 7€)/ 2y?]cTy  (21)
where Tz = Lign/Be is the undulator transit time and k.4
is the radiation wave number in the laboratory. For
optimal amplification, w.T = 2.61 [4], so that for N >> 1,
y>>1and a,, << 1, maximum gain occurs for

2V Ky-iab

Kriab = ’
1+3W2[1+ 4<n0—lab>]
<n1—lab>

When ny4(r) and ng,a(r) are proportiona to 1/r and

Ne1an(r) is independent of r, the electron quiver velocity,

gain, and wavelength at which maximum gain occurs are

independent of r, giving ideal undulator performance. For

an ultrarelativistic beam, the gain eguals that of a planar

magnetostatic undulator with the same quiver velocity

[13], while the wavelength experiencing maximum gain is
modified because < ng > # 0ineq. (22).

(22)

SAPPLICATION

To maximize FEL gain while minimizing the ion
density, a strong undulator with a,, = 1 at the beam radius
and a strongly modulated ion channel with ny(r) =
No1an(r) May be utilized. To ensure stable propagation, we
consider an undulator period much shorter than the
betatron wavelength [2, 11]. Theion density required for
a, = 1 is given by eg. (6). For a relativistic e-beam, a
periodic ion density < Ny > of 3.5x10™ cm® is required
for a beam radius r, of 1 cm and A2 = 10 cm, while
< Nyiap> = 3.5%x10" cm® is required for r, = 1 mm and
Awiab = 1 cm. A periodic density of < ny.,> = 3.5x10"
cm? isrequired for r, = 100 pm and Ayas = 1 mm, while
< Nyap> = 3.5x10" cm® is required for rp, = 10 pm and
Awaap = 100 um. Inal cases, the undulator period is much
shorter than the betatron wavelength for y >> 3.
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One method of obtaining a periodic ion channel is to
create a periodic plasma channel by ionizing a periodic
gas density [1]. When an e-beam propagates in the
channel, the plasma electrons are expelled, provided that
the electron beam density exceeds the peak ion density.
For a strongly modulated ion channel, this requires a
beam current exceeding (17 KA)(Kwiabfo)B?a,. For the
above examples, the beam current must exceed 11 KA.
The parameters for r, = 1 cm are comparable to those of a
magnetostatic X-band FEL with ion channel guiding [7],
suggesting that a periodic plasma channel FEL may be
operated in the ion-focusing regime.

When a strongly modulated ion beam is used as a
channel, the electron beam density may be smaller than
that of the ions, since gjection of plasma electrons is not
required. Transporting ions out of the FEL within an ion
bounce period may limit the ion hose instability [3].

6 SUMMARY

A cold electron beam propagating in a periodic ion
channel amplifies radialy polarized radiation. When the
undulator period is much shorter than the betatron
wavelength, the gain at a given distance from the axis
equals that of a planar magnetostatic undulator with the
same quiver velocity. Our analysis suggests that an X-
band FEL may operate in the ion-focusing regime when
an electron beam expels plasma electrons from plasma
with periodic density. When an ultrarelativistic electron
beam propagates in a periodic ion channel with density of
10"-10" cm®, a short-wavelength FEL may be obtained.
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