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Abstract

The reliability of Particle-In-Cell simulations depends
on the accuracy of field and charge characterization at
emission boundaries. In this work a novel approach to
the modeling of curved emission boundaries in 3D-PIC
simulations is presented. The method uses a boundary-
conformal discretization for the electrostatic field equa-
tions, based on the orthogonal grid formulation of the Finite
Integration Technique [1]. It also implements a consistent
procedure for injecting particles at arbitrarily curved emis-
sion surfaces. The efficiency of the method is shown in
3D-simulations for the space-charge-limited emission in a
Pierce gun model.

INTRODUCTION

Motivation

Electromagnetic PIC codes are commonly used for in-
vestigating the physics of charged particles in accelerators.
A typical PIC simulation consists of a coupled computation
of the dynamic particle equations and of the electromag-
netic field solution on a computational grid. Among several
techniques used for the solution of the field equations, the
FD, FDTD and FIT applied on orthogonal, spatially stag-
gered grids are the most popular. This is due to the ca-
pability of orthogonal grids of efficiently handling large to
huge problems, and to the simplicity of the underlying data
structure and implementation. However, the modeling of
geometries with curved material boundaries on orthogonal
grids, poses principal difficulties in maintaining solution
accuracy close to such boundaries. The often used stair-
case approximation introduces large discretization errors,
even when the grid size is very small. The low accuracy
of boundary fields at curved emission surfaces strongly af-
fects the overall performance of PIC simulations in two
more particular ways. First, the local space-charge-limited
emission model will predict inaccurate emission currents
at staircase boundaries. Second, the large number of grid
nodes needed for resolving geometry details leads to se-
rious restrictions on the time step used in the simulation.
This paper introduces a boundary-conformal approach to
3D-PIC simulations which retains the advantages of or-
thogonal grid modeling while providing accurate solutions
for arbitrarily curved emission boundaries.
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Mathematical Model

The model equations considered, consist of the set of
equations of motion forN computational particles,

dri

dt
= vi ,

dmevi

dt
= e(E + vi × B) , (1)

with i = 1 . . . N , wheree is the electron charge,me is the
relativistic electron mass; particle positions and velocities
are given byri andvi, respectively. Assuming only elec-
trostatic particle-particle interactions the space-charge field
E is obtained by

∇(εE) =
1
ε0

N∑

i

qiδ(r − ri) , E = −∇ϕ , (2)

whereε is the material dielectric constant andqi the charge
carried by thei-th particle.

The set of equations (1,2) is completed by specifying
boundary conditions for the electrostatic potentialϕ, and
initial conditions for the particle positionsri and veloci-
tiesvi. In the case of space-charge-limited emission parti-
cle initial conditions can be derived by locally applying the
Child-Langmuir diode equation [2],

JCL =
(

4ε0

9

)√
2e

me

δϕ
3/2
b

δd2
, (3)

whereJCL is the current at the emission surface, andδϕb

denotes the local potential difference at a small distanceδd
from the emission surface. Thus, the space-charge-limited
emission condition is completely determined by the elec-
trostatic potential solution obtained in (2).

CONFORMAL METHOD

Discrete Field Equations

Equations (2) are discretized in space using the Finite
Integration Technique (FIT) [1]. This technique uses an
orthogonal doublet of staggered grids, with grid potential
valuesΦi defined on the primary grid nodes (cf. Fig. 1).

Denoting,
��

d = (
��

d1,
��

d2, . . .)T the vector of electrostatic
fluxes through each of the elementary facets of the dual
cells, the discrete equations counterpart to (2) read,

S
��

d = q ,
��

di =
∫∫

∆Ai

ε(∇ϕ)dA , (4)

whereS is the discretediv-operator,q is the vector of total
charge contained in each of the dual cells and∆Ai is the
area element corresponding to thei-th dual cell facet.
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Figure 1: (a) Primary grid and a dual cell in the FIT. (b)
Staircase vs. conformal discretization.

Equations (3) are theexact representation of (2) in terms
of the finite fluxes

��

di. A discretization error arises first,
when the flux integrals

��

di are approximated using poten-
tial grid valuesΦi. The conformal approach used in this
paper for evaluating the flux integrals was first proposed
for high frequency applications [3]. It minimizes the dis-
cretization error by taking into account the geometry of the
material boundary within inhomogenously filled cells con-
taining curved material transitions (cf. Fig. 1b). In con-
trast to the staircase approximation, the conformal method
requires no additional mesh refinement at curved bound-
aries, because subcellular material information is already
contained in the formulation.

Particle Injection

Injecting computational particles at emission boundaries
involves a) identifying appropriate geometrical samples for
the initial particle positions and b) determining charge and
velocity values for the emitted particles, which are consis-
tent to the emission current (3).

In this implementation, the first step is realized by means
of a triangular mesh of specified size which is generated on
the emission surface. Then, static emission samples are lo-
cated at the triangle barycenters. The algorithm selects all
or a random part of these samples, assigning their positions
to the emitted particles. In this procedure, uniform as well
as locally refined distributions for the particle initial posi-
tions (e.g., at sharp emission tips) are obtained.

Identify emission samples

Select initial positions

Compute space-charge.
Solve field equations

Inject particles

PIC step

t t t� �� Converged?

Yes

No

Figure 2: Simulation flow chart with particle injection.

The second task is to compute the charge carried by
the emitted particles according to the space-charge-limited

emission model. For this purpose, a small constant dis-
tance spanδd from the emission samples in the direction
normal to the source surface is introduced. This allows of
determining local currents (3) associated to the emitted par-
ticles. The consistency between the computed currents and
the field solution is enforced by performing a fixed point
iteration as shown in the flow chart of Fig. 2. Here, the
particle charges predicted by (3) are assigned to the grid
during each iteration using a Cloud-In-Cell (CIC) interpo-
lation scheme [4]. The resulting field equations (4) are re-
peatedly solved until no additional charge can be extracted
from the source surface, i.e., a consistent emission current
is established.

RESULTS

In order to demonstrate the performance of the method,
test simulations for a Pierce gun model are performed.
The fully 3D-model of the gun [5] contains a spherical
Dispenser-cathode with Os-coating (M-type), anode and
focus electrode with specific parameters listed in Table 1.
Additionally, a focusing, static magnetic field of strength
90mT on the gun axes was externally computed with
the commercial simulation package CST EM StudioTM [6]
and loaded into the simulations.
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Figure 3: Geometry of the Pierce gun and simulated beam.

Figure 3 shows the geometrical gun arrangement and the
simulated electron beam2.5 ns after the beginning of the
emission process. A total of1.5 mio. computational parti-
cles were used in the simulation, corresponding to an aver-
age of3.000 particles per time step, injected into the emis-
sion area according to the above procedure. The beam en-
velope develops transversal oscillations, which are due to a
slight mismatch between accelerating voltage the focusing
magnetic field [5]. The computed charge distribution and
potential along the gun axes are shown in Fig. 4.

Table 1: Pierce Gun Parameters [7]

Voltage 90kV Cathode disc radius33.1 mm

Convergence angle37.15◦ Anode disc radius 16.8 mm

Anode angle 47.0◦ Focus angle 45.0◦

Waist distance 62.0 mm Waist radius 8.0 mm
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Figure 4: Charge density and potential on the gun axes.

The main result of this investigation is illustrated in
Fig. 5–6. The steady state emission current is monitored
on the source surface using several discrete models of dif-
ferent mesh resolutions. The numerical convergence of
simulations using the staircase approximation is shown in
Fig. 5. In this case, the relative error obtained for fine to
moderate mesh sizes varies between 10–25%. Only at the
very fine discretization of1.5 mio. mesh nodes, the emis-
sion current approaches the correct curve. Despite the slow
convergence, the staircase models introduce numerical os-
cillations in the current curves, resulting from the low order
field approximation at the emission surface.

Figure 6 shows the simulation results using the confor-
mal method. The emission current curves do already con-
verge at the lowest mesh resolution For emission domi-
nated problems, the high accuracy of the conformal method
implies better numerical performance. Recalling the solu-
tion algorithm shown in Fig. 2, a consistent modeling of
space-charge-limited emission requires several solutions of
the grid-field-equations (4) at every time step; the number
of iterations depending on the share of space-charge-fields
in the total particle forces. The computational effort for the
solution of these equations, typically involving an iterative
solver, can therefore be reduced by using the conformal
model, since the number of mesh nodes can be decreased
without accuracy loss. Note also, that using larger cell
sizes in conformal models, improves the stability bounds
imposed on the explicit integration of (1). This issue, how-
ever, will be discussed in a forthcoming publication.

CONCLUSIONS

The conformal method for the modeling of space-
charge-limited emission from curved surfaces is based
on a) a boundary conformal discretization of the elec-
trostatic field equations and b) on a boundary conformal
technique for particle injection at emission time. The
method enforces the field-space-charge consistency im-
plied by Child’s law, by iterating the field solution equa-
tions until a consistent current is established.

The numerical simulation of a Pierce gun model shows
that the conformal method is considerably superior to the
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Figure 5: Emission currents on the source surface using
staircase modeling.
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Figure 6: Emission currents on the source surface using the
conformal method.

staircase approximation. In the presented simulation, the
fast numerical convergence of the method allows of reduc-
ing the number of mesh nodes by at least 10 times com-
pared to the staircase simulation.
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