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Abstract

The usual approach to predict particle loss in storage
rings in the presence of nonlinearities consists in the de-
termination of the dynamic aperture of the machine. This
method, however, will not directly predict the lifetimes of
beams. We have developed a code which can, by paral-
lelization and careful speed optimization, predict lifetimes
in the presence of 100 parasitic beam-beam crossings by
tracking > 1010 particles·turns. An application of this code
to the anti-proton lifetime in the Tevatron at injection is
discussed.

BEAM-BEAM EFFECTS IN THE
TEVATRON

In its current setup, the Tevatron operates with 36⊗ 36
proton/anti-proton bunches, which share the beampipe in
a helical scheme. During the injection stage, which takes
place at 150GeV, all 72 interaction points are parasitic.

During injection, a relatively fast decay of the anti-
proton current is observed; the lifetimes obtained by fitting
to an exponential decay behavior are of the order of 1 hour.
In the absence of the proton beam, the anti-proton lifetime
is well beyond 20 hours. The proton beam itself is unaf-
fected, having a vastly higher charge. Thus, it seems jus-
tified to assume that the lifetime behavior is due to weak-
strong beam-beam effects.

LIFETIME CALCULATIONS

The beam lifetimes we would like to simulate are of the
order of 1hour. For the Tevatron, this corresponds to a loss
rate of < 5.8 ·10−9N/turn, where N is the number of parti-
cles in a weak bunch.

We choose a direct particle tracking approach to life-
time calculations, as opposed to the usual dynamic aperture
calculations. As we are dealing with a proton machines,
synchrotron radiation damping mechanisms are absent, so
there is no natural limit on the number of turns one needs to
track. Assuming that we need to observe 102 particles be-
ing lost during the tracking procedure to get decent statis-
tics, we need to simulate > 1.7 · 1010Particles ·Turns. As
we are interested in the injection stage, where we assume
that all parasitic crossings will contribute to the dynamics
of the beam, > 1.2 · 1012 weak-strong interactions need to
be simulated. The computational effort necessary is clearly
out of the range of single processor machines.
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Parallelization clearly is needed to tackle the problem
described above. But even when parallelized, the com-
putational demands of a proton tracking code for lifetime
calculations are pushing the limits of the computing re-
sources available to us. Thus, a carefully designed, speed-
optimized code is necessary; only the physics relevant to
the problem should be included.

The code PlibB (Parallel Lifetime Calculations with
beam-Beam) was written with this goal in mind. It is not
an optics code; rather it assumes a machine description pre-
pared for it  using  MAD8, using a defined convention of
marking the interaction points within the beamline.

Using the MAD input file, a PERL script then runs MAD
several times to (1) calculate the closed orbit of both beams
(2) calculate the linear transfer matrices for the anti-proton
beam between interaction points with respect to the closed
orbit and (3) calculate the one-turn matrix for the proton
beam with respect to each interaction point. The Twiss pa-
rameters and transfer matrices are then used by the script to
generate a C++ program file, containing an alternating se-
quence of beam-beam kick elements and linear transforma-
tions, as well as a single ’aperture’, ’twiss’, and ’one-turn
chromaticity’ element each (see below). This file is then
compiled and linked into the main code.

In the code, we consider fully coupled motion, which
is handled the following way: (Roman indices run over
1 . . .2N, Greek ones over 1 . . .N.) Let M be the one-turn
matrix with respect to a given interaction point, it is as-
sumed to describe stable motion, i.e. all its eigenvalues
are of unit modulus and pairwise complex conjugate, be-
longing to complex conjugate eigenvectors: �λ(µ) = λ(µ),

with normalization �λ +
(µ)J

�λ(µ) = i, where J is the sym-
plectic pseudometric. We can now find correlation matri-
ces of eigendistributions C(µ) = MC(µ)M� where C is a
real, symmetric, positive semidefinite matrix. Introducing

z(µ) =�λ �
(µ)

�λ(µ), it is easy to check that C(µ) =
�λ(µ)

�λ +
(µ)

2 +c.c.
forms a set on N such correlation matrices. The real nor-

malized vectors �v±(µ) =
�λ(µ)±�λ ∗

(µ)√±2
are real vectors and span

eigenplanes to which the motion associated with the tune
νµ is restricted. We can construct matrices Dl

µ,± = v(µ)
±

and D−1 = JDJ� which transform to a diagonal basis in
which DMD−1 is a decoupled rotation matrix and DCD�
are projectors onto the eigenplanes. Our code determines
the matrices D,D−1,Cµ from the one-turn matrix of pro-
tons and anti-protons. The µ indices are sorted accord-
ing to the eigenvalue, so coordinates are labeled by the
associated tune. Emittances are then chosen as to have
the spatial diagonal elements of the total correlation matrix

0-7803-7739-9 ©2003 IEEE 3542

Proceedings of the 2003 Particle Accelerator Conference



C = ∑µ εµC(µ) coincide with the known beam dimensions.
For the Tevatron at injection, ε0 ≈ εy,ε1 ≈ εx,ε2 ≈ εs to
within a few percent.

Chromaticity can be artificially inserted by reading off
the eigenchromaticities by analyzing the eigenvalue de-
pendence of M with energy (in the case of the Tevatron,
this is in good agreement with the x,y chromaticity output
by MAD). Then, the appropriate phase advance is applied
each turn to each particle by going to the eigenbasis, rotat-
ing by a phase of 2πξδi, and going back to the usual basis.

ANALYTIC TREATMENT OF THE
BEAM-BEAM KICK

The integrated transverse kick of a gaussian bunch can
be expressed by the Bassetti-Erskine Formula[1] in terms
of the complex error function w(z).

The evaluation of w turns out to be the most time-critical
component of the code. Thus, we surveyed a number of
implementations, (for a comprehensive list, see [2]); the
fastest we found are the Chiarella-Matta-Reichel algorithm
([3]) and brute force, namely, a pre-calculated 2-D lookup
table and bilinear interpolation. This is good for 10−6 ac-
curacy. The lookup method works very well on the IBM
SP, which has a large data cache; on the PC platform, the
first method turns out to be faster.

The implementations were checked with a reference im-
plementation ([4]). Numerical experiments showed that a
10−5 relative accuracy or better everywhere is sufficient for
typical simulation lengths; lifetime estimates (see below)
are in excellent agreement with code using 10−16 accu-
racy implementations; test particles begin to showed visi-
ble deviation from the reference implementation not before
105 . . .106 turns.

Currently, the speed achieved is 106

(kicks,transforms)/second on Intel Xeon and 6.7 · 10 5

(kicks,transforms)/second on IBM SP.

Parallelization

The Weak-Strong is embarrassingly parallelizable; a par-
allel code merely assigns different chunks of particles of a
common particle pool to each processor. Communications
between processes is only necessary when collective quan-
tities (lost particles, beam sizes, ...) are calculated.

Simplified Distributions

Usually, one would not expect particles in the core of the
beam being lost. Therefore, one can use ’de-cored’ distri-
butions where particles near the center of the distribution
are left out, thus increasing the effective speed of the sim-
ulation. Different strategies are possible. Clearly, a simple
cutoff in each phasespace dimension is not sufficient, as it
will not be a matched distribution. In action space, differ-
ent cutoffs are possible , the limiting cases of which are
(with an obvious notation referring to phasespace coordi-
nates normalized to unity)

• An all-dimensional cutoff, i. e., a 2d-hypersphere of
radius R cut out: ρ(�x) ∝ Θ (|�x|−R)e−|�x|2/2d(|�x|2d)dΩ
; the ratio of particles within that distribution is

N/N0 = e−R2/2
d−1

∑
i=0

R2i

22ii!

• pairwise radial cutoff, i. e., the direct product of dis-
tributions with a disc of radius R cut out: ρ(�x) ∝
∏i Θ(x2

i + p2
i −R2)e−(x2

i +p2
i )/2)ddxdd p, here

N/N0 = (1− exp(−R2/2))n

For d = 3 (six-dimensional phasespace), the latter choice
(which we use in our code) eliminates more particles for
typical choices (R ≈ 1σ . . .2σ) of the cutoff. Typically, we
use 2σ in both transverse direction, corresponding to a sav-
ings factor of ≈ 4.0.

Optimized Transport in Beam-Beam Kicks

The eigendistributions obtained from the one-turn proton
matrices in each interaction points are used to calculate the
transverse proton beam profile ellipse. Depending on the
quantities σlong/σtrans,−2〈xy〉/〈x2〉− 〈y2〉, and its deriva-
tive, the transport of a particle with non-zero longitudinal
coordinate or the strong beam’s ellipse into the actual inter-
action point may require to consider (1) the hourglass effect
(2) the tilt of the beam ellipse (3) an s-dependent tilt of the
beam ellipse. Consequently, 6 different routines were writ-
ten to handle the possible cases in a speed-optimized fash-
ion. The appropriate routine for a given interaction point is
determined at the initialization stage of the code.

LIFETIME ESTIMATES

During the tracking procedur, the 3 action variables of
the particle are determined (in the “Aperture” element).
The action is recorded in the particle’s data structure if it is
greater than actions recorded before. Thus, after comple-
tion of each turn, one has a record of the maximum action
for each particle.

Scanning through Ix, Iy-action space, one can count the
number of particles beyond a certain Ix, Iy. Assuming that
this action pair represents the physical aperture of the ma-
chine, one gets a number NLost(Ix, Iy; t) (where t represents
the number of turns), which is a monotonously falling func-
tion with respect to Ix, Iy for fixed t and a monotonously
rising function with respect to t for fixed Ix, Iy. In order not
to slow down the code, this scan is typically run after each
103 . . .104 turns. The instable particles are identified and
its tag number printed out; in a subsequent run, the code
can be run with only the instable particles in the initial dis-
tribution; phase space dumps then are used to help; identify
the instability mechanism.

Looking at NLost for fixed Ix, Iy, one can observe typical
lifetime patterns: a quick loss of particles (due to fast res-
onances or mismatching effects), going over into a linear
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behavior for large turn numbers. Extrapolating the linear
behavior, one can estimate the lifetime, assuming a certain
aperture, by looking at the slope of the linear part of NLost .
The advantage of this procedure is, of course, the fact that
it allows to check the connection between physical aperture
and lifetime for a number of apertures with a single run.

PARAMETER SCANS

We run a series of studies, varying proton current and
chromaticity. The intensities were normalized to unity at
1000 turns (disregarding, in effect, fast losses due to mis-
matching). Typical results are given in figures . . .. The x
aperture was fixed at > 9σ . Fig. (plot courtesy T. Sen)
shows the results of an exponential fit for the intensity re-
sults for the chromaticity scan. The apparently decreasing
lifetimes for increasing apertures near 3σ can be explained
by the choice of the fit, only for large apertures can the
intensity be approximated by an exponential function; for
smaller apertures, I(t) ≈ exp(−√

t/τ ). Clearly, a better
model for the I(t) is needed to accurately predict actual
lifetimes.

An interesting observation is the increase in lifetime with
decreasing y chromaticity. This signature is indeed ob-
served experimentally1. However, the region of the pre-
dicted jump in lifetime has not been accessed experimen-
tally so far.
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CONCLUSION AND FURTHER
DIRECTIONS

Through parallelization and optimized implementation
of tracking procedures, the PlibB code is able to calculate
finite lifetimes caused by parasitic beam-beam crossings
based on the tracking simulation of ≈ 1010 particles·turns,
which, as it produces measurable quantities, can be viewed
as a distinct advantage over dynamical aperture results pro-
duced by other tracking codes. While we are able to repro-
duce the signatures of anti-proton loss in the injection stage
of the Tevatron, the model is not complete.

The possibly most important physics we are missing
is magnet nonlinearities. The natural chromaticity of the
Tevatron due to sextupole elements is extremely high (it is
compensated down to 8 units, however). While we have
implemented the effective global lattice chromaticity, the
high local sextupole content may lead to strong non-linear
effects. To handle this effects, we have implemented a
fast truncated power series evaluator and a chain of tools,
involving MAD and COSY inifinity, which allows us to
extract high-order maps between interaction points and
compile them into PlibB.
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