
NEW FEATURES IN THE SDDS-COMPLIANT EPICS TOOLKIT *

H. Shang, R. Soliday, L. Emery and M. Borland
Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

This paper introduces new features and programs
developed to enhance various aspects of the SDDS-
compliant EPICS toolkit. A new optimization program,
sddsoptimize, was added to the toolkit; it employs the
Simplex and 1-D scan methods and can be used for both
EPICS and non-EPICS optimizations. Several new data
logging programs were also developed, including a new,
more flexible glitch logger that logs data before and after
a glitch occurs. Another new data logger logs data every
time the value of a process variable changes. With the
data generated from this program, it is now possible to
restore settings from any arbitrary time without the need
for a snapshot of the system. Another new addition is the
capability of saving and restoring waveform process
variables. In addition to these new features, performance
improvements have been realized in all the toolkit
programs by replacing EZCA calls with low-level
channel-access calls. Some of the toolkit programs have
been upgraded to run on vxWorks to achieve higher
performance.

INTRODUCTION
The SDDS-compliant EPICS toolkit is a set of software

applications (tools) for the collection or writing of data
collected from Experimental Physics and Industrial
Control System (EPICS) database records. Although most
of the applications essentially do rather simple operations,
the combination of these applications and others from the
SDDS postprocessing toolkit allows arbitrarily
complicated analysis of data and control of the
accelerators at the Advanced Photon Source (APS). These
tools are general enough to be applied to devices other
than accelerators, provided that the devices are under
control of EPICS. One can regard the EPICS tools as the
layer between the EPICS control system and more
functional analyzing tools and scripts, with the SDDS
protocol files as an intermediary. EPICS database records
are referred to as process variables (PVs), each one
having a unique name. PVs can be analog, digital (two or
more states), or entire waveforms, depending on the I/O
configuration. APS has developed over twenty SDDS-
compliant EPICS programs. These programs can be
categorized into three functional groups: (1) configuration
save and restore, (2) data collection, and (3) process
control [1]. The purpose of this paper is to review
enhancements, new features, and new programs
developed for the SDDS-compliant EPICS toolkit.

ENHANCEMENT OF CHANNEL ACCESS
EZCA (Easy Channel Access) provides a simplified

interface to channel access for C programs. As a generic
channel access facility, EZCA is used in many EPICS
programs. The main shortcomings of EZCA are
instability and speed: using EZCA, channel access errors
occur unpredictably and channel access can be very slow.
To overcome these problems, all EZCA calls in the
SDDS-compliant EPICS toolkit have been replaced by
low-level channel-access calls.

NEW FEATURES AND PROGRAMS
FOR PROCESS CONTROL

This section describes new features added to the
program sddscontrollaw and a new optimization
program, sddsoptimize. Both of these programs are used
for process control.

sddscontrollaw
This program provides a generic feedback capability

for EPICS. As an accelerator control tool,
sddscontrollaw is applied to (1) maintain constant energy
and trajectory from the linac using an experimentally-
derived matrix, (2) correct the orbit in the particle
accumulator ring (PAR), (3) steer and maintain the
storage ring (SR) orbit using a theoretical matrix and an
orbit despiking filter, (4) maintain the APS ring injection
trajectory, (5) regulate power levels from linac klystrons,
and (6) regulate output of pulsed magnets using pulsing
history. It is also used by a Tcl/Tk script that allows on-
the-fly creation of one-readback, one-actuator control
loops [1].

However, sddscontrollaw could not perform fast orbit
correction because it was workstation-based and
connected to each control and readback PV as a scalar. In
order to perform fast orbit correction, the following new
features were added:

• Frequency-band overlap compensation [2]
The APS real-time orbit feedback system (RTFS)

operates in parallel with the DC orbit correction (DC OC)
sddscontrollaw. The output of the RTFS is high-pass
filtered with a cut-off frequency of 0.02 Hz to avoid
interfering with the DC OC. If the DC OC has a
bandwidth lower than that of the RTFS high-pass cut-off
frequency, then a part of the orbit noise spectrum is not
corrected. If the DC OC has a bandwidth higher than the
RTFS high-pass filter cut-off, then the bands overlap (i.e.,
corrections doubled) and the orbit noise increases in the
overlapping region. We developed a feedforward scheme
in sddscontrollaw to allow operation in the latter overlap
condition. At each iteration the expected orbit change
from the DC OC is added to the value of the RTFS BPM

* Work is supported by U.S Department of Energy, Office of Basic
Energy Sciences, under Contract No. W-31-109-ENG-38.

0-7803-7739-9 ©2003 IEEE 3470

Proceedings of the 2003 Particle Accelerator Conference

set points, thus preventing the RTFS from reacting to the
DC OC corrector change. An additional file for the
corrector-to-BPM set point matrix is required, since the
set of BPMs in the RTFS may be different from those in
the DC OC. Digital filtering of the BPM set points is also
possible to account for corrector response. With this
compensation, a large amount of frequency-band overlap
is now workable and serves to eliminate the possibility of
a gap in the total OC response spectrum.

• The ability to read and set waveform PV values was
added to the program. Waveform PVs can be used to
provide rapid access to arrays of scalar PVs of similar
properties. In this case, waveform PVs are used to provide
collections of corrector power supply set points and of
beam position monitor readbacks.

• EZCA channel access function calls were replaced
with the low-level channel access functions. Testing has
shown that low-level channel access is more efficient and
reliable compared to the EZCA channel access.

• The workstation version of the program
sddscontrollaw is limited in performing DC OC for the
APS storage ring (SR) because it has to contact many
different IOCs at each iteration to send and receive the
BPM and corrector data. To overcome this limitation, the
program was ported to VxWorks and hence can run in
IOCs using that operating system. For the APS DC OC
application [3], the IOC in question has special hardware
to send and receive vectorized corrector and BPM values
to and from a memory backplane, which moves the data
to and from the other related IOCs at a very high rate.

• sddscontrollaw has a feature that suspends or
resumes correction based on whether test conditions are
satisfied by a group of PVs. For example, DC OC is
inhibited when beam is lost, when a corrector changes by
a large amount, when a BPM has a bad status, etc. The
necessary testing of so many PVs is time-consuming, so
we developed a special-purpose program, sddspvtest, that
performs this function and sets a single PV with the
result. sddscontrollaw then need only test this one PV.

As a result of these new features, sddscontrollaw is
able to correct the APS orbit at a rate of 20 Hz [3]. In
addition, sddscontrollaw is used in linac IOCs to perform
klystron power regulation. Having the same code running
on a workstation and in the IOC both reduces code
maintenance requirements and expedites development of
new features and control loops.

sddsoptimize
This is a new addition to the SDDS control tools. It
provides a generic optimizer that can be used for cases
where feedback is not applicable. The main features of
the optimizer are detailed below:

• The optimization criterion is the rms value of one or
more PVs, or else the value obtained by running a script.
In the former case, one may optionally assign weights,
target values, and tolerances for each PV. In the latter
case, the measurement script can be used to perform more
general operations, which may or may not involve
accessing PV values.

• Two optimization methods are provided: simplex and
successive 1D optimization (also called 1D scan).
Simplex is a multidimensional minimization method that
requires only function evaluations [4]. It is frequently the
best method if the computational burden is small. By
default, our simplex method makes explicit use of a one-
dimensional minimization algorithm as a part of the
computational strategy, since this often will make the
optimization proceed faster; this can be disabled in cases
where it is found not to help. The successive 1D scan
method allows minimization of the target with respect to
each parameter separately and in turn. The main
disadvantage is that if the optimal changes of the
parameters are mutually dependent, this method may
converge very slowly toward the minimum. Nevertheless,
it runs efficiently when the variations are quasi-
independent.

• Setting the values of PVs can be replaced by running
a “variable script” (given by the varScript option) so that
the program can effectively set PVs in an arbitrarily
complicated fashion or even perform optimizations that
do not involve PVs. There are no CA calls in
sddsoptimize if both variable and measurement script are
provided, so non-EPICS optimizations are possible. For
example, one can optimize the results of a simulation.

• The program performs minimization by default and
will perform maximization if the “-maximize” option is
given.

• sddsoptimize can be used to adjust knob PVs, which
are predefined linear combinations of PVs. Examples are
knobs for orbit bumps or ganged timing control for a set
of kicker magnets.

• To make the optimization robust, a series of validity
tests on PV values are implemented by means of an
additional SDDS file containing the names of PVs and
their corresponding limit values. The optimization is
suspended if one of the tests fails. This can be used to
avoid processing invalid data and to terminate the
program if it adjusts settings beyond a safe or reasonable
range.

• The optimization can be stopped at will by the user
using ctrl-c (i.e., the UNIX SIGINT signal). The best
settings obtained so far will then be implemented before
the program terminates.

• sddsoptimize optionally logs settings and results to
an SDDS file. This file can be used to view results during
or after an optimization, and also to set up a new
optimization.

As a result of these features, sddsoptimize has been
applied to the APS SR for (1) maximizing injection
efficiency, (2) storage ring beam x-y coupling
minimization, (3) booster-to-SR rf phase adjustment to
center injected beam in the rf bucket, and (4) on-axis
injection setup and closed bump setup. sddsoptimize has
also been used in the APS linac for beam-based
optimization of rf phase and power, and in the PAR for
maximizing capture efficiency. It was also employed for
fitting APS linac bunch compressor measurements using

3471

Proceedings of the 2003 Particle Accelerator Conference

the simulation code elegant to evaluate the values of the
fit (through particle tracking) at the experimental points.

NEW PROGRAMS IN THE DATA
COLLECTION TOOLKIT

Data collection programs provide various types of data
logging into SDDS files [1]. Three new programs,
sddsglitchlogger, sddslogonchange, and sddssynchlog
have been developed and are discussed in this section.

sddsglitchlogger—This program is able to log data
before and after a glitch occurs, where a glitch is a sudden
change in readings from a process variable. Although
another data logging program, sddsmonitor, provides a
similar capability, sddsglitchlogger is much more
flexible. For example, with sddsglitchlogger one can
specify multiple glitch conditions and corresponding
multiple output files. This allows one sddsglitchlogger
process to do the work of many sddsmonitor processes,
thus decreasing loads on IOCs. As in sddsmonitor, the
PVs to be logged are defined in an input file. The trigger
PVs can be defined either in the input file as parameters
or in a separate trigger file. In the former case, many
output files may be specified for different sets of logged
PVs, each triggered by a different, single PV. If multiple
trigger PVs are required, then a separate trigger file is
used. There are three types of triggers, detailed use of
which is described in the manual page: (1) Alarm-Based
Trigger − Occurrence of an alarm of a specified severity
or severities results in dumping of data; (2) Transition-
Based Trigger − Data is dumped when the specified PV
transitions through a certain level from above or below
(as selected); and (3) Glitch-Based Trigger − The trigger
fires when the difference of the PV value from the
average of recent values is greater than the glitch
threshold. To make sddsglitchlogger more robust, a
conditions file is supported that lists conditions that must
be satisfied at each time step before the data can be
logged. This prevents accumulating and logging invalid
data.

sddslogonchange—The program sddslogonchange
logs data every time a PV's value changes. With the data
generated from this data logger it is possible to restore
settings from an arbitrary time without a snapshot from
the system. With the introduction of the program
sddslogonchange it is now possible to log slowly-
changing PVs more efficiently than previous SDDS data
loggers. Data loggers such as sddsmonitor and
sddslogger log every PV at a specified iteration, while
sddslogonchange logs a PV only when its value
changes. Therefore no unnecessary data is logged. By
logging the initial values of every PV it is possible to
determine each PV's value at any given time from
sddslogonchange’s output file. As in sddsalarmlog,
disk space efficiency is enhanced by using the SDDS
array feature to store PV names in a coded format,
obviating the need to store the same string each time a PV
changes.

sddssynchlog— EPICS is by its nature an
asynchronous control system. This can present problems
in data collection and correlation analysis. The program
sddssynchlog addresses this issue by collecting time-
stamped data from many PVs, then organizing the data to
line up the time stamps. This is necessary given that
different IOCs may have different loads and hence serve
data at different rates or even with gaps. Even in such an
environment, sddssynchlog provides data suitable for
reliable correlation analysis. The program was used
extensively in the APS linac, helping to pinpoint
problems with BPMs and to find sources of beam motion.

NEW PROGRAMS IN THE
CONFIGURATION SAVE AND RESTORE

TOOLKIT
Previous SDDS-based configuration save and restore

programs only work for scalar PVs. In order to be able to
handle waveform PVs, two new programs sddswget and
sddswput have been developed for the configuration save
and restore toolkit, as will be described in this section.

sddswget—This program is developed to provide a
convenient and fast method for collecting waveform data,
including character and string types. The input file to
sddswget specifies the waveforms to be read; this may be
done with a file that is compatible with sddswmonitor, or
using a sddswget-specific SDDS file. The latter is
formally identical to the output file produced by
sddswget, which is convenient in many cases.
Optionally, one may specify the names of the PVs on the
command line.

sddswput—This program was developed to provide a
convenient and fast method for setting waveform data
from SDDS files. Like sddswget, it supports character
and string types. It accepts as input the output files from
sddswget.

sddswget and sddswput are used to retrieve booster
corrector ramp tables, initialize waveform PVs in the DC
OC, and save and restore waveform PVs in the data pool
IOCs. sddswget and sddswput are also used in the rapid
reconfiguration of the APS monopulse BPM trigger
timing systems for different bunch patterns.

REFERENCES
[1] M. Borland, L. Emery, Proceedings of the 1995

ICALEPS Conference, Chicago, Illinois, pp. 653-662
(1996).

[2] C. Schwartz, L. Emery, Proceedings of the 2001
Particle Accelerator Conference, Chicago, IL, pp.
1234-1236 (2001).

[3] R. Soliday, M. Borland, L. Emery, H. Shang, “Use of
a Simple Storage Ring Simulation for Development
of Enhanced Orbit Correction Software,” these
proceedings.

[4] W. Press, S. Teukolsky, W. Vettering and B.
Flannery, “Numerical Recipes in C,” Cambridge
University Press, p. 408 (1992).

3472

Proceedings of the 2003 Particle Accelerator Conference

