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Abstract

Singular-value decomposition of the data matrix con-
taining beam position histories yields a spatial-temporal
mode analysis of beam motion by effectively accomplish-
ing the statistical Principal Component Analysis. Similar
to the Fourier analysis, this mode analysis decomposes the
spatial-temporal variation of the beam centroid into a su-
perposition of orthogonal modes that are informative. We
briefly review this mode analysis technique and show some
interesting modes observed at the APS storage ring.

INTRODUCTION

Fourier analysis is commonly used to extract basic beam
dynamics information in a storage ring. Generally it is a
1D harmonic mode analysis of beam temporal motion. In
recent years, as a major part of Model-Independent Analy-
sis (MIA), a spatial-temporal mode analysis technique has
emerged for studying beam dynamics [1,2], where the spa-
tial information comes from a large number of BPMs and
the temporal information comes from turn-by-turn beam
position histories at all BPMs. All the beam histories form
a data matrix B = (bm

p )/
√

P where the column index m
indicates the monitor, the row index p indicates the pulse or
turn, and P is the number of turns. Usually B is normalized
such that BT B is the variance-covariance matrix of BPM
readings. The spatial-temporal mode analysis uses the sin-
gular value decomposition (SVD) of B to decompose beam
motion into a superposition of orthogonal spatial-temporal
modes according to the Principal Component Analysis. We
introduce the technique first, then show, with data from
the Advanced Photon Source (APS) storage ring, that the
spatial-temporal modes are interesting and informative.

SVD Mode Analysis

Mathematically, an SVD of the matrix B yields

B = USV T =
d∑

i=1

σiuiv
T
i , (1)

where UP×P = [u1, · · · , uP ] and VM×M = [v1, · · · , vM ]
are orthogonal matrices, SP×M is a diagonal matrix with
nonnegative σi along the diagonal in decreasing order,
d = rank(B) is the number of nonzero singular values,
σi is the i-th largest singular value of B, and the vector ui

(vi) is the i-th left (right) singular vector. The singular val-
ues reveal the number of independent variations and their
magnitudes, while each set of singular vectors form an or-
thogonal basis of the various spaces of the matrix. These
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properties make SVD extremely useful. An SVD routine is
commonly available in numerical packages. Thus it is as
easy as Fourier analysis to obtain the SVD of B that yields
a large set of {σi, ui, vi}. Each set of {ui, vi} defines a
spatial-temporal mode, where ui gives the temporal varia-
tion, vi gives the spatial variation, and σi gives the overall
strength of this mode.

Principal Component Analysis

Principal Component Analysis is a major multivariate
statistical data analysis technique. It is used to reduce
a large set of observed variations to a minimum set of
variables that account for the correlations observed in the
sample variance-covariance matrix. The basic idea is to
find the first “principal axis” in the data-point space such
that the sample variance of the components of all data
points along this axis is maximum, then find the next
such axis that is orthogonal to the other principal axes,
and so on. In our case, each BPM is one variable and
the readings at the M BPMs for one turn become a data
point in an M -tuple space. To find the first principal axis
v1 = {v11, v12, · · · , v1M}T with vT

1 v1 = 1, we need
to maximize the variation projected onto this axis, i.e.,
var(

∑
m v1mbm

p ) = var(Bv1) = vT
1 BT Bv1 = max. This

maximization requires that the maximum variance is equal
to the largest eigenvalue λ1 of BT B, and v1 is the cor-
responding eigenvector. After finding the first principal
axis, the associated variations can be subtracted out and
the residual variation ∆B = B − (Bv1)vT

1 is orthogonal
to v1. In the same way, we can find the principal axis v2

for the residual variation ∆B. Since v2 is orthogonal to v1,
v2 must be an eigenvector of BT B as well. By repeating
this procedure we can find all the principal axes and all are
eigenvectors of BT B. Let the variations along the principal
axes be wi = Bvi. It is easy to see that they are orthogonal
to each other as well because wT

i wj = vT
i BT Bvj = λiδij .

Furthermore, the variance of wi is λi. Normalizing wi by
its standard deviation σi =

√
λi, we have orthonormal vec-

tor ui = wi/σi with uT
i uj = δij . Putting the spatial vec-

tor v’s into matrix V = [v1, v2, · · ·], temporal vector u’s
into U = [u1, u2, · · ·], and the standard deviations into di-
agonal matrix S = diag(σ1, σ2, · · ·), we get B = USV T .
Therefore, the SVD of B in fact accomplishes the statistical
Principal Component Analysis of beam histories. In other
words, statistical analysis is the foundation of the spatial-
temporal mode analysis and SVD is the tool.

For more discussion on the technique and characteris-
tics of the singular-value spectrum, see [2]. Usually a large
number of modes are generated, but less then a dozen lead-
ing modes are due to beam motion; the rest are due to BPM
noises. In the next section, we present a set of interesting
spatial-temporal modes observed at the APS.
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MODES OBSERVED

The following modes are from horizontal BPMs with a
horizontally kicked beam in the APS ring. There are nine
modes above the noise floor. The first two are dominat-
ing betatron modes that are well understood and used for
beam measurements. We skip these two modes here for
lack of space. The next seven modes are shown in Figs.
1-7. In each figure, the spatial vector is on the top, the tem-
poral vector is in the middle, and the Fourier spectrum of
the temporal vector is at the bottom. The red dots are bad
BPMs. Shown on the left-hand labels are the mode number
and singular value in units of BPM count (7 µm). Brief
comments are given in the figure captions. Note that the
magnitudes of these modes are on the order of microns.

Remarks

The spectra of the temporal vectors indicate that each
mode corresponds to certain excitations that have charac-
teristic features in the frequency domain. This is remark-
able since the statistical analysis knows nothing about the
frequency domain. This also indicates that the associated
spatial vectors should provide useful spatial information
about the excitation, though more studies are required to
fully understand and make use of such information. (In our
case, bad BPMs make it even harder by breaking spatial
periodicity.) What we have shown here are just more ex-
amples demonstrating that spatial-temporal mode analysis
provides a useful way to investigate beam motion.
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Figure 1: The third mode shows an oscillation unrelated to
the kick. Its spectrum sharply peaked at the synchrotron
tune and its spatial vector is consistent with dispersion.
Thus this mode is due to residual synchrotron oscillation
of magnitude 10 µm. The insert is the lower end of the
spectrum that shows various power-line harmonics, which
are the cause of the undamped synchrotron motion.
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Figure 2: The fourth mode shows a kicked beam oscillat-
ing at the vertical tune. Since both the kick and observation
are in the horizontal plane, this leads to transverse cou-
pling. Misalignment of the kicker and BPMs might also
contribute.
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Figure 3: The fifth mode is the other vertical betatron mode
paired with mode 4. See Fig. 5 for more comments.
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Figure 4: The sixth mode is rather different from others.
The signal is excited by the kick and then smoothly damped
instead of oscillating. Mixed with it are small oscillations
at various frequencies.
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Figure 5: The seventh mode shows oscillation with fre-
quencies νy , νy−νx, and νy+νx (νx � 35.20, νy � 19.26,
and frev = 271 kHz). The right-most sum line is particu-
larly strong, which suggests that sum resonance is much
stronger than the difference resonance. Note that the sum
signal also appeared in the vertical betatron modes, espe-
cially in Fig. 3. Thus the sum resonance might be the main
driving force for transverse coupling.
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Figure 6: The eighth mode is unrelated to the horizontal
kick. Its spectrum shows peaks around 0.36,1.5, 3, and 6.8
kHz. The zig-zag motion suggests that it may be due to
feedback. In fact, some of these frequencies are connected
with the real-time feedback system. Power line noise could
be a factor as well.
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Figure 7: The ninth mode oscillates at 2νx indicating non-
linear effects due to either lattice or BPM nonlinearity. The
spatial vector suggests large effects around BPM 50 and
150. It is remarkable that the spatial-temporal mode analy-
sis can clearly resolve this mode even at such a low signal
level.

3412

Proceedings of the 2003 Particle Accelerator Conference


