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Abstract 2 THEORY

Emittance growth due to noise from a transverse beam
feedback system are discussed. A theory for calculating

emittance growthrate as a function of the feedback system'’s (0) Beamn only beam "
. . . . n [t
measured open loop transfer function is derived. A sim- Oy P
ple feedback system was installed, measured, and tested in (b) Open Loop
. . gain beam
the Fermilab Tevatron, and the emittance growthrate results n(t) p Y

agree very closely with the theory.

(c) Closed Loop

1 INTRODUCTION

As particle densities in accelerators and storage rings in-
crease, instabilities arise that dilute emittance or, at worst,
actually drive the beam out of the machine. Beam feedback
systems can extend the intensity threshold of these insta-
bilities. These systems have pushed the intensity limits dfigure 1. Here are the three systems that will be considered
many accelerators beyond their design intensity and haugthis section.
become a necessity for present day operation.

For most beam feedback applications, the dominant de-!" this section, we will derive the relative growth rates
sign specification is the system gain required to counteff the emittance of the beam when the damper loop is open
act the instability growth rate. This gain is predominantly2nd when itis closed given its open loop response function
limited by the delay and dynamic range of the system. A¢(w)H (w). Referring to Figure 1(a), if the response func-
secondary but significant design specification is the amoufien in the time domain i (¢) = u(t)h(t) whereu(t) is
of noise power that is deposited in the beam. This noig@€ unit step function, then the outpuj,. from noisen(t)
will cause emittance growth over time periods on the ordd? SImply the convolution
of minutes unless there is some other damping mechanism t
such as synchrotron radiation. Noise will have a minimal Yout () = / dr h(r)n(t — ) (1)
effect on fast cycling machines, but it could have a devas- 0

tating effect on hadron storage rings that must maintain highhere we have used(t) = 0if ¢ < 0. Then the mean

luminosity. squared growtkiy2,, ) is simply
Instrumentation for measuring feedback system response
functions has become increasingly powerful in the last four 9 o b iwT ’
years, and feedback designers have taken advantage of this (Your) = /_ . dw /O dr h(r)e™" S(w)  (2)

when designing new feedback systems for existing ma-

chines. By measuring the system response at low beam whereS(w) is the spectral power density functiofi(w) is

tensity, the stability of the system at higher intensities cadefined to be

be extrapolated. The theory and application of this tech- . T oo

nigue are well documented. P, = lim 57 / dt 2%(t) = / dw S(w)  (3)
This paper documents the extrapolation of noise proper- Tee -T -

ties of the feedback system from the system response megad it can be shown [1] by using the stationary property that

surements. First, a theory for determining relative emit-

tance growth rate as a function of the system response is de- / " / > —iw(t —t")

) ) . . t—t t—1t")) = dw S 4

rived. Second, the theory is tested in the Fermilab Tevatron (n( 2l ) w S(w)e “)

storage ring. The paper will show how the measured rel- . . ) .

ative growth rates compare between feedback loops operf OF Figure 1(b), when there is agan elemétit) in the

and closed, and it will show how closely these rates confyStem, we can use (3) and Parseval's theorem to show that

pare with theory. oo ¢ 2
open)? = [ | [ ar hir)e | |G)s()
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Finally for Figure 1(c), when we close the loop, the growth of(y?_ ..)|c=o is linear as shown in Figure 4.
Now, when the loop is closed ardd ~ 5.5 at18.327 kHz,
G(w) — _ 1 (6) the growth rate is reduced by a factor of 3 fr¢m71 +
1+ G(w)H (w) 0.05) x 1073 mm2s~! t0 (0.24 + 0.05) x 10~3 mmPs?,
and thus
_ . 2
(eosea)® = [T dw | [y dr B(r)e|"
2
‘ 1+G($)H(w_) ‘ S(w) (7

If the observed growth rate whetns large is dominated
by the linear part ofyopen)? then

2
X

d<yopen>2/dt = slope |:ffooo dw ‘f(: dr B(T)eiwf

2
|G(w)] S(w)] ) Figure 3: This graph shows how the vertical beam size typ-
ically grows when a noisy vertical kicker is used to excite
where slopg] is defined to be the slope of the function forthe beam. In this case, the noise density= 1.25 W/kHz

larget. betweenl7.417 kHz and19.417 kHz.
If we assumeS(w) = constant andG(w) = g, whereg
is independent ab, then the relative growth is

) [fw p M 2 s Growth in Beam Size
slope | J_ dw TrgH (@) .
d<yglosed>/dt — 0.25
AW osea) /At g=0 t, T )2 ‘
(Yeiosea) /dtlg slope | [ dw ‘fo dr h(T)ewr o2
(9) NE 0.15
Equation (9) is the equation which we will use to fit the mea- f
sured data shown in the next section. o O
0.05
3 EXPERIMENT oo
The simplified block diagram of our narrow band damper oosblo s oo
system is shown in Figure 2. This block diagram is an ex- S e (o) P90 500 9%

ample of the system shown in Figure 1(c), Thus, we can use
the previously discussed theoretical results to analyze the
experimental data. Whef is set to zero and only noise is Figure 4: Itis clear from here that the growth rate is linear
which satisfies the condition required in the theory. When
the loop is closed, the growth rate is reduced by a factor of
3.

We plotthe measured relative growth rates and the theoreti-
cal relative growth rates in Figure 5. The theoretical growth
rate was calculated using (9) with the measuréad) H (w)
shown in Figure 6. Itis important to notice that there are no
free parameters in the theory, i.e. the theory is not fitted to
the data. The goodness of fit criteria is given by

N

2
di2. Y, dE. )i
XZ = lz LQ < <yexpt>, _ <ythe01y> ) (10)

o; dt dt
Figure 2: This figure shows a simplified block diagram of =t
our narrow band damper. wherer = N — 1 andN is the number of data points. Us-
ing (10), the goodness of fit our theory to the measured data
fed into the beam at 150 GeV, we see that the vertical beam1.3. According to Bevington [2]x2 should be about 1

size grows as expected. This is shown in Figure 3. In faeind less than.5 for a good fit. As a comparison, we also
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show in this plota linear least squares fit constrained to patisen the maximum noise density that we can allow in the
through(0, 1) of the data. The linear least squares plot habroadband system &4 uW/kHz if we assume that each

ax?~3.

Relative Growth Rate vs Relative Gain
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Figure 7: The absolute growth rate at 150 GeV when the
loop is open versus the spectral power density is linear. The
Figure 5: The theoretical curve is shown here with the datagise bandwidth is fixed at 2 kHz centred abtiB47 kHz.

Alinear least squares fit of the data which must pass through
the point(0, 1) is superimposed for comparison.

4 CONCLUSION

We have demonstrated how we can calculate the

Open Loop Response
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growth rate when we are given the open loop response.
This observed relative growth rate agrees with the theo-
retical relative growth rate. Therefore, if we are given the
open loop response of the damper system, we can calculate
what the expected growth rate of the beam. Finally, from
our measurements of the absolute growth rate we can put
an upper limit on the noise density that we are allowed for
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Figure 6: This is the measured open loop response of thg
system i.eG(w)H (w).

Finally the measured absolute growth rate when the
loop is open versus the spectral power density is shown
in Figure 7. We see that the the growth rate is lin-
ear w.r.t. spectral power density. The least squares fit
gives the emittance growth rate per spectral power den-
sity to be (0.55 x 1072)7 (mm-mrads !)/(W/kHz) or
19.87 (mm-mradhr—1)/(W/kHz) over the narrow band of
band of 2 kHz which encloses all the tune lines centred
about18.847kHz. Using this number and assuming that the
maximum emittance growth rate @827 mm-mrad -mrad
-hr=! allowed in the Tevatron, then the maximum noise
density that we can have in the narrow band damper sys-
tem is 10 mW/kHz. For a broadband system of 10 MHz,
we have approximately 425 tune bands in this bandwidth,
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the damper design.
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