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Abstract

By considering delta function multipole perturbations
and using difference action-angle variable equations, we
find some useful analytical formulae for the estimation of
the corresponding dynamic apertures of circular accelera-
tors based on the Chirikov criterion of the onset of stochas-
tic motions. Their combined effects and two dimensional
dynamic apertures are discussed also. Comparisons with
numerical simulations are made, and the agreement is quite
satisfactory.

1 INTRODUCTION

In this paper we will show how single sextupole, and sin-
gle 2m pole in general in a storage ring limit the dynamic
aperture and what is their combined effect if there are more
than one nonlinear element. From the established analyti-
cal formulae for the dynamic aperture one gets the scaling
laws which relate the nonlinear perturbation strengths, beta
functions, and the dynamic apertures. Restricted to sex-
tupole case, we establish the corresponding 2D analytical
dynamic aperture expression.

2 ANALYTICAL FORMULAE FOR
DYNAMIC APERTURES

To start with we consider the linear horizontal motion
of the reference particle (no energy deviation) in the hori-
zontal plane (y=0) assuming that the magnetic field is only
transverse (Ax = Ay = 0) and has no skew fields, and Φ
is a constant. The Hamiltonian can be simplified as

H =
p2

2
+
K(s)

2
x2 (1)

where x denotes normal plane coordinate, p = dx/ds, and
K(s) is a periodic function satisfying the relation

K(s) = K(s+ L) (2)

where L is the circumference of the ring. The solution of
the deviation, x, is found to be

x =
√
εxβx(s) cos(φ(s) + φ0) (3)

where

φ(s) =
∫ s

0

ds

βx(s)
(4)

As an essential step towards further discussion on the mo-
tions under nonlinear perturbation forces, we introduce
action-angle variables and the Hamiltonian expressed in
these new variables:

Ψ =
∫ s

0

ds′

βx(s′)
+ φ0 (5)

J =
εx
2

=
1

2βx(s)

(
x2 +

(
βx(s)x′ − β′xx

2

)2
)

(6)

H(J,Ψ) =
J

βx(s)
(7)

Since H(J,Ψ) = J/βx(s) is still a function of the inde-
pendent variable, s, we will make another canonical trans-
formation to freeze the new Hamiltonian:

Ψ1 = Ψ +
2πν
L

−
∫ s

0

ds′

βx(s′)
(8)

J1 = J (9)

H1 =
2πν
L
J1 (10)

Before going on further, let’s remember the relation be-
tween the last action-angle variables and the particle de-
viation x:

x =
√

2J1βx(s) cos
(

Ψ1 − 2πν
L
s+

∫ s

0

ds′

βx(s′)

)
(11)

Being well prepared, we start our journey to find out the
limitations of the nonlinear forces on the stability of the
particle’s motion. Limited by the space we consider at this
stage only a sextupole (no skew term). The perturbed one
dimensional Hamiltonian can thus be expressed:

H =
p2

2
+
K(s)

2
x2 +

1
3!Bρ

∂2Bz

∂x2
x3L

∞∑
k=−∞

δ(s− kL)

(12)
Representing eq. 12 by action-angle variables (J1 and Ψ1),
and using

Bz = B0(1 + xb1 + x2b2) (13)

one has

H =
2πν
L
J1+

(2J1βx(s1))3/2

3ρ
b2L cos3 Ψ1

∞∑
k=−∞

δ(s−kL)

(14)
where s1 and s2 are just used to differentiate the locations
of the sextupole and the octupole perturbations. By virtue
of Hamiltonian one gets the differential equations for Ψ 1

and J1
dJ1

ds
= −∂H1

∂Ψ1
(15)

dΨ1

ds
=
∂H1

∂J1
(16)

dJ1

ds
= − (2J1βx(s1))3/2

3ρ
b2L

d cos3 Ψ1

dΨ1

∞∑
k=−∞

δ(s− kL)

(17)

0-7803-7191-7/01/$10.00 ©2001 IEEE. 1799

Proceedings of the 2001 Particle Accelerator Conference, Chicago



dΨ1

ds
=

2πν
L

+
√

2J1/2
1 βx(s1)3/2

ρ
b2L cos3 Ψ1

∞∑
k=−∞

δ(s−kL)

(18)
We now change this differential equations to the differ-
ence equations which are suitable to analyse the possibili-
ties of the onset o stochasticity [2][3]. Since the perturba-
tions have a natural periodicity of L we will sample the dy-
namic quantities at a sequence of si with constant interval
L assuming that the characteristic time between two con-
secutive adiabatic invariance breakdown intervals is shorter
than L/c. The differential equations in eqs. 17 and 18 are
reduced to

J1 = J1(Ψ1, J1) (19)

Ψ1 = Ψ1(Ψ1, J1) (20)

where the bar stands for the next sampled value after the
corresponding unbared previous value.

J1 = J1 − (2J1βx(s1))3/2

3ρ
b2L

d cos3 Ψ1

dΨ1
(21)

Ψ1 = Ψ1 + 2πν +
√

2βx(s1)3/2J1
1/2

ρ
b2L cos3 Ψ1 (22)

Eqs. 21 and 22 are the basic difference equations to study
the nonlinear resonance and the onset of stochasticities
considering sextupole and octupole perturbations. By us-
ing trigonometric relation

cosm θ cosnθ = 2−m
m∑

r=0

m!
(m− r)!r! cos(n−m+ 2r)θ

(23)
one has

cos3 θ =
2
23

(cos 3θ + 3 cos θ) (24)

cos4 θ =
1
24

(2 cos 4θ + 8 cos 2θ +
4!

((4/2)!)2
) (25)

If the tune ν is far from the resonance lines ν = m/n,
where m and n are integers, the invariant tori of the un-
perturbed motion are preserved under the presence of the
small perturbations by virtue of the Kolmogorov-Arnold-
Moser (KAM) theorem. If, however, ν is close to the above
mentioned resonance line, under some conditions the KAM
invariant tori can be broken.

Consider now the case where there is only one sextupole
located at s = s1 with βx(s1). Taking the third order reso-
nance,m/3, for example, we keep only the sinusoidal func-
tion with phase 3Ψ1 in eq. 21 and the dominant phase in-
dependent nonlinear term in eq. 22, and as the result, eqs.
21 and 22 become

J1 = J1 +A sin 3Ψ1 (26)

Ψ1 = Ψ1 +BJ1 (27)

with

A =
(2J1βx(s1))3/2

4

(
b2L

ρ

)
(28)

B =
√

2βx(s1)3/2J
−1/2
1

(
b2L

ρ

)
(29)

where we have dropped the constant phase in eq. 22 and
take the maximum value of cos3(Ψ1), 1. It is helpful to
transform eqs. 28 and 29 into the form so-called standard
mapping [3] expressed as

I = I +K0 sin θ (30)

θ = θ + I (31)

with θ = 3Ψ, I = 3BJ1 and K0 = 3AB. By virtue of
the Chirikov criterion [3] it is known that when |K0| ≥
0.97164 [4] resonance overlapping occurs which results
in particles’ stochastic motions and diffusion processes.
Therefore,

|K0| ≤ 1 (32)

can be taken as a natural criterion for the determination of
the dynamic aperture of the machine. Putting eqs. 28 and
29 into eq. 32, one gets

|K0| = 3J1βx(s1)3
( |b2|L

ρ

)2

≤ 1 (33)

and consequently, one finds maximum J1 corresponding to
am/3 resonance

J1 ≤ Jmax,sext =
1

3βx(s1)3

(
ρ

|b2|L
)2

(34)

The dynamic aperture of the machine is therefore

Adyna,sext =
√

2Jmax,sextβx(s) =

√
2βx(s)√

3βx(s1)3/2

(
ρ

|b2|L
)

(35)
Eq. 35 gives the dynamic aperture of a sextuple strength
determined case. The reader can confirm that if we keep
sin(Ψ1) term instead of sin(3Ψ1) in eq. 26, one arrives at
the same expression for Adyna,sext as expressed in eq. 35.

Finally, we give the general expression of the dynamic
aperture in the horizontal plane (z = 0) of a single 2m
(m ≥ 3) pole component:

Adyna,2m =
√

2βx(s)
(

1
mβm

x (s(2m))

) 1
2(m−2)

×
(

ρ

|bm−1|L
)1/(m−2)

(36)

where s(2m) is the location of this multipole. Eq.
36 gives us useful scaling laws, such as Adyna,2m ∝(

ρ
|bm−1|L

)1/(m−2)

, and Adyna,2m ∝
(

1
βm

x (s(2m))

) 1
2(m−2)

.

If there is more than one nonlinear component, how can
one estimate their collective effect? Fortunately, one can
distinguish two cases:
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1) If the components are independent, i.e. there are no spe-
cial phase and amplitude relations between them, the total
dynamic aperture can be calculated as:

1
A2

dyna,total

=
∑

i

1
A2

dyna,sext,i

+
∑

j

1
A2

dyna,oct,j

+ · · ·

(37)

2) If the nonlinear components are dependent, i.e. there are
special phase and amplitude relations between them (for
example, in reality, one use some additional sextupoles to
cancel the nonlinear effects of the sextupoles used to make
chromaticity corrections), there is no general formula as eq.
37 to apply.

In the above discussion we have restricted us to the case
where particles are moving in the horizontal plane, and the
one dimensional dynamic aperture formulae expressed in
eq. 37 are the maximum stable horizontal excursion ranges
with the vertical displacement y = 0. In the following we
will show briefly how to estimate the dynamic aperture in
2 dimensions when there is coupling between the horizon-
tal and vertical planes. Now we consider the case where
only one sextupole is located at s = s1, and we have the
corresponding Hamiltonian expressed as follows:

H =
p2x
2

+
Kx(s)

2
x2 +

p2y
2

+
Ky(s)

2
y2

+
1

3!Bρ
∂2Bz

∂x2
(x3 − 3xy2)L

∞∑
k=−∞

δ(s− kL) (38)

Generally speaking, there exists no universal criterion to
determine the start up of stochastic motions in 2D. Fortu-
nately, in our specific case, we find out the similarity be-
tween the Hamiltonian expressed in eq. 38 and that of the
Hénon and Heiles problem which has been much studied
in literature [5]. The Hénon and Heiles problem’s Hamil-
tonian is given by

HH&H =
1
2

(
x2 + p2x + y2 + p2y + 2y2x− 2

3
x3

)
(39)

When HH&H > 1/6 the motion becomes unstable. The
intuition we get from this conclusion is that there should
exist a similar criterion for our problem, i.e. to have stable
2D motion one should have H ≤ Hmax. Note that Kx(s)
and Ky(s) in eq. 38 are equal to unity in the Hénon and
Heiles problem’s Hamiltonian. The previous one dimen-
sional result helps us now to find Hmax. When y = 0 one
has Hmax ∝ A2

dyna,sext,x, since x ≤ Adyna,sext,x. When
y 	= 0, the crossing terms in eqs. 38 and 39 will play the
role of exchanging energy between the two planes, and for
a given set of x and y the total energy of the coupled sys-
tem can not exceedHmax. If we define Adyna,sext,y is the
dynamic aperture in y-plane, one has:

βx(s1)A2
dyna,sext,x = βy(s1)A2

dyna,sext,y + βx(s1)x2

(40)

or:

Adyna,sext,y =

√
βx(s1)
βy(s1)

(A2
dyna,sext,x − x2) (41)

where βy(s1) is the vertical beta function where the sex-
tupole is located and Adyna,sext,x is given by eq. 35. Dif-
ferent from eq. 36, the derivation of eq. 41 is quite in-
tuitive, hinted by the Hénon and Heiles problem which
has been studied numerically instead of analytically in lit-
erature. From eq. 41 one understands that the differ-
ence between Adyna,sext,y and Adyna,sext,x comes from√
βx(s1)/βy(s1). If there are many sextupoles in a ring

one usually has Adyna,sext,x ≈ Adyna,sext,y since βx(si)
will not be always larger or smaller than βy(si).

To check the validities of eqs. 36, 37, and 41 we have
used the lattice of Super-ACO as a test band and used a
program named BETA [6] as the numerical simulation tool.
After a systematic comparison it is found that these analyt-
ical expressions are valid. The detailed comparison results
can be found in ref. [7].

3 CONCLUSION

We have derived the analytical formulae for the dynamic
apertures in circular accelerators due to single 2m pole in
general, and the combination of many independent mul-
tipoles. A very interesting application of these analytical
formulae is to calculate the beam-beam limited dynamic
aperture and lifetime as shown in detail in ref. [8].
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