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Abstract

We extended the ability of DEPOL [1] to calculate cou-
pled spin resonances and used it to determine the location
and strength of both intrinsic and coupled spin resonances
in RHIC. In particular we are interested in the full res-
onance structure with solenoidal elements turned on and
with quadrupole rolls[2]

1 MODIFICATION OF DEPOL
ALGORITHM

Following the development of the DEPOL[1]algorithm
which begins with the following general expression for res-
onance:

ε =
1
2π

∮
ζ(s)
ρ(s)

eiKθ(s)ds (1)

where ζ = −(1+Gγ)(ρz′′ + iz′)+ iρ(1+G)(z/ρ)′ , K is
the resonance tune and θ is the orbital bending angle. This
integral can be broken up into contributions from separate
magnets:
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Applying partial integration to this integral we can obtain
an intermediate form:
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where ξ are contributions due to edge focusing of the mag-
net. Applying partial integration again so that we obtain:
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In the uncoupled case this integral is evaluated using the
homogeneous equation z ′′ = −kzz, substitution using this
equation allows us to exactly evaluate Eq. 5. This is the
primary algorithm used in DEPOL[1]. In the case of linear
coupling however the homogeneous equation is no longer
valid for all the elements. So we proceed by block diag-
onalizing the individual transfer matrices for the coupling
element. Thus we hope to transform the z coordinate into
a basis where a new homogeneous equation is true. The
technology to accomplish this has been already developed
by Edwards and Teng[3]. Thus given an element with off
diagonal values in the 4x4 transfer matrix:

Me =
(

Ae Be

Ce De

)
(6)

Here A,B,C and D represent 2 × 2 submatricies which can
be used to develop a transformation which will block di-
agonalize Me (the subscripts e denote that only individual
transfer matrices are being consider as opposed to the one
turn transfer matrix):

ReMeR
−1
e =

(
Ee 0
0 Fe

)
(7)
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)
(8)
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4
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(9)
Using Rewe can express x, px, z, pzin a locally uncou-

pled basis a, pa, b, pb (the over bar on C indicates a sym-
plectic conjugate):
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x
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e
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
 (10)

In this basis the homogeneous equations a ′′ = −kaa and
b′′ = −kbb will hold. We can determine kaand kbby con-
sidering that from accelerator theory:

(
a2

a′2

)
=

(
cos(ϕa) sin(ϕa)√

ka

−√
ka sin(ϕa) cos(ϕa)

)(
a1

a′1

)
(11)
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Thus ka = −Ee2,1
Ee1,2

and kb = −Fe2,1
Fe1,2

. So to solve the

integral in equation 5 we can write z = [re1,1a+ re1,2pa +
b] 1√

1+|re|
to obtain:
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Here we have substituted the homogeneous equation in
for a and b and considered the normalized momentum
pa ≈ a′. Now using a integration technique similar to the
original DEPOL[1] paper:∫ s2
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we obtain a final closed expression:∫ s2
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Thus our final expression for the resonance contribution
from each magnet element is:
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Of course for those elements which are already block di-
agonal we can neglect the local rotation to a diagonal basis
and employ the original form:

∫ s2

s1

zeiKθds =
(z′2 − iK

ρ z2)eiKθ2 − (z′1 − iK
ρ z1)eiKθ1

kz −K2/ρ2

(16)
for substitution into equation 5.

2 IMPLEMENTATION IN CODE

DEPOL derives its twiss parameters from MAD twiss
output files and using them constructs the z1,2and z′1,2 val-
ues necessary to evaluate the resonance amplitude. How-
ever when MAD evaluates the twiss values under condi-
tions of linear coupling it employs V1 and V2 coordinates
which correspond to the bloc diagonal basis for the one
turn transfer matrix. To correctly evaluate the resonance
strength we must transform back to the original basis to
obtain x, px, z, pz. So in our code we read in values for the
R matrix which is printed in the madout file, and use it to
transform the V 1, V 1′, V 2, V 2′ back to the x, px, z, pz ba-
sis. From here we can then implement equation 15 for each
element.

There is an additional complication in the implemen-
tation of this program which is an expression of the sub-
tleties of equation 1. In the original DEPOL code implicit
use was made of the properties of the enhancement func-
tion which for Gγ values on resonance yield the exact con-
tribution to the resonance amplitude from one turn around
all the elements in the accelerator lattice. However since
we are dealing with a Fourier expansion in non-integer K
values the actual integral in equation1 must go from minus
infinity to plus infinity. When evaluating resonances due to
linear coupling an integral only once around the lattice will
yield a superposition of enhancement functions due to both
vertical and horizontal tunes. In this case we are forced
to integrate equation 1 over many passes to obtain a good
approximation for the resonance strength.

3 RESULTS FROM ANALYSIS OF THE
AGS

We initially looked at the effect of increasing solenoidal
strength values for the partial snake in the AGS. We plot-
ted resonance strength as a function of coupling strength
Cx = |∆Qmin|

|νx−νz |+
√

|νx−νz |2+|∆Qmin|2 . Compared to previ-

ous approximations [4] we expect the slope to be approxi-
mately equivalent to the original intrinsic resonance at that
energy. As you can see from Figure 1 this is exactly what
we found as we moved from 0% to 5% snake.

Next we investigated the behavior of the resonance
strength as a function of skew quad strength. Using the
measured Cxvalues and the resonance strength with zero
skew quad field strength we constructed an approximation
of the coupling resonance strength using [4]. As you can
see in Fig 2 this approximation compares favorably with
our results. Differences begin to set in when considering
coupling elements which significantly alter the tunes and
when considering very weak resonances where the periodic
structure of the coupling can contribute to resonance calcu-
lations.
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Figure 1: Spin coupling resonances vs. Cx for 36+νx,36-
νx,12+νx and 0+νxresonances. Where (36+νz)=0.01085,
(36-νz)=0.0057, (12+νz)=0.0023 and (0+νz)=0.0062
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Figure 2: 36+νxresonance strength vs. skew Quadrupole
field strength with 5% snake.The straight line is the approx-
imation [4]

4 PRELIMINARY RESULTS FROM RHIC

In RHIC the coupling elements originate from three pos-
sible sources. Quadrupole rolls, solenoidal fields in the de-
tectors and longitudinal fields in the snakes. Using pre-
liminary values for the quadrupole rolls in the interaction
region obtained from [2] we generated Fig. 3. In Fig. 4 we
evaluated the Coupling spin resonances for the peak values
for the solenoidal fields in the PHENIX and STAR detector.
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Figure 3: Modified DEPOL results on for Coupled Spin
resonances on lattice with quadrupole rolls errors in inter-
action regions

In Fig 5 using the transfer matrices obtained from actual
field maps of the helical snakes [5], you can see the contri-
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Figure 4: Modified DEPOL results on for Coupled Spin
resonances on lattice with solenoidal fields from PHENIX
and STAR turned on

bution to the Coupling spin resonance from a single snake
element. While clearly the function of the snake is to elimi-
nate resonances thus Fig 5 doesn’t give the whole picture it
does provide a useful tool to better understand the strength
and location of potential snake resonances.
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Figure 5: Modified DEPOL results on for Coupled Spin
resonances on lattice with coupling from a single helical
snake.
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