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Abstract
Immediately prior to final focus onto a fusion target,
heavy ion driver beams are compressed in length by
typically an order of magnitude (see e.g. [1] and [2]).
This process is simultaneous with bending through
large angles to achieve the required target illumination
configuration. The large increase in beam current is
accommodated by a combination of decreased lattice
period, increased beam radius, and increased strength of
the beamline quadrupoles. However, the large head-to-
tail velocity tilt (up to 5%) needed to compress the
pulse results in a very significant dispersion of the
pulse centroid from the design axis. A principal design
goal is to minimize the magnitude of the dispersion
while maintaining approximate first order achromaticity
through the complete compression/bend system.
Configurations of bends and quadrupoles which achieve
this goal while simultaneously maintaining a locally
matched beam-envelope have been analyzed.

1 INTRODUCTION
Conceptual heavy ion driver systems for inertial

fusion energy generally require multiple high power ion
pulses of very short duration on the fusion target to
achieve an efficient implosion of the fusion capsule.
Typically, this might be made up of 84 separate beams
of 2.5 GeV Cs+, each with 2.0 kA and 10 ns duration.
Such short pulses cannot be accelerated effectively
using induction linac technology so drift compression
by about an order of magnitude between the linac and
the final focus system is employed. Several novel
features of beam dynamics arise simultaneously in this
compression zone.  The high currents are confined by
quadruples in a FODO configuration, with bends located
in the drift sections to achieve the desired target
illumination symmetry.  To compress a beam pulse, a
head-to-tail velocity tilt of several percent is applied
during the final stages of acceleration in the linac.
Current rises steadily during compression and this
requires that either the quadrupole focal strength or the
beam radius simultaneously increase.  Roughly, the
dimensionless generalized perveance Q is related to the
lattice period length (P) and the mean beam edge radius
( a ) by the the space charge limit:
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where we have taken the undepressed lattice tune to be
σ0 = 72o per period.  Here I is the beam current, q is the
ion charge, m is the ion mass, βγmc is the ion
momentum, and ε0 is the permittivity of free space. If
P is held at a low constant value to limit dispersion
then a  is seen to increase as I1/2.  A rough measure of
the sideways displacement of the beam centroid (x) is
obtained  from the matched smooth limit formula
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where ρ is the local mean curvature of the design orbit
and ∆  is local fractional momentum tilt. For example
ρ=50 m, ∆  = 0.02, P=3.0 m yields x= 2.3 mm.  A
critical question is whether the dispersion x(z) of a
beam segment remains in a matched state with small
amplitude oscillations while the lattice and beam
parameters change.  Furthermore, it is desirable that the
entire pulse enters the final focus system essentially on
axis, i.e. the system is in some sense achromatic.
There is no simple principle of design that will
guarantee these features for a single slice of a pulse, let
alone for the entire pulse.  However, there is ample
evidence from numerical analysis that an “adiabatic”
variation of lattice features will suffice.  That is, if ρ, I,
and P vary slowly on the scale of a betatron
wavelength, the dispersion, as well as the beam
envelope may remain in a nearly matched condition.
As mentioned, there does not appear to be a developed
mathematical basis for this strategy, so it must be
examined by numerical examples.
In this study of the beam centroid dispersion and
envelope during drift compression in bends, model
equations are integrated using a simple Mathematica

code. The model assumptions are: 1. KV envelope
equations for beam radii in the x (in bend plane) and y
(vertical) directions; 2. A centroid equation which
includes: image forces, off-momentum slices from
velocity tilt, non-linear in ∆ ; 3. A longitudinal
envelope equation, based on a constant g-factor model
for calculating the longitudinal space charge force; 4.
Discrete bend and quadrupole elements.  The lattice
period, focusing strength and perveance are allowed to
vary with z.  The goal is to try to minimize dispersion
throughout the bend system and particularly the final
centroid x and ′x  at exit of the bend system. For this
study, the parameters were those typical of a Heavy Ion
Fusion (HIF) “driver,” see table 1.
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Parameter Value

Charge state (q/e) 1
Ion Mass (amu) 132.9
Ion Energy (GeV) 2.43
Initial Current per beam at accel. exit (A) 103.4
Final Current per beam (A) 2254
Compression Factor 21.8
Final Perveance Q 0.000181
Velocity tilt (Dv/v) -0 .031
Total drift length (m) 502.3
Beam radius evolution a ~ Sqrt[Q/Qo]
Lattice period evolution L ~ constant

Table 1. Parameters used  in this study. Parameters are
typical of what is expected for an HIF “driver”.

2 MODEL EQUATIONS AND
EXAMPLE PARAMETERS

Four simultaneous equations are solved:
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Here l is the bunch length, x is the centroid position, a,
b are the envelopes in the x,y -directions, q is the ion
charge, m is the ion mass, v0, p0,γ are the nominal ion
velocity, momentum, and Lorentz factor of the ion; p is
the particular ion momentum of the slice; ρ0 is the
instantaneous nominal radius of curvature of the bend,
G is the quadrupole gradient; R is the pipe radius; kL is
the longitudinal focusing constant, εN is the normalized
emittance, λ  is the line  charge density; C is the total
charge in each beam, and ε0 is the permittivity of free
space.  We assume that the pulse evolves self-similarly
with a parabolic line charge density satisfying

  λ ζ= −3 1 4 22 2C( / ) /( )l l  for   ζ / /l 2 1( ) ≤  and slice

momentum satisfying   p p/ /0 1= + ′l lζ , where ζ  is the

slice position relative to the bunch center, with   ζ /l

constant for each slice.

3 BEND STRATEGIES
We consider three design strategies for placing bends in
a drift compression lattice: 1.Abrupt bends, in which all
bends are full strength. This is the simplest
configuration from which to compare improved designs;

2. Matched bends: Here we choose bends of half-
strength over a distance equal to one-half undepressed
betatron period.  The centroid will enter the full
strength section, at the peak of the amplitude of a half-
strength bend centroid betatron orbit, with ′ ≈x 0   (in
the smooth focusing approximation). This will be close
to the matched condition for a full strength bend, and
hence subsequent bends are at full strength.  3.
Adiabatic bend: In this design strategy, a gradual ramp-
up of bend strength over several betatron periods is
carried out, keeping centroid and envelope oscillations
“matched” at low amplitude.

4 COMPARISON OF THE BEND
STRATEGIES

Figures 1a, 1b, and 1c illustrate the layout of
instantaneous radius of curvature of the bend centroid
using bend strategies 1-3 respectively.

Abrupt bend

(1a)

Matched bend

       (1b)

Adiabatic bend

.                (1c)
Figure 1. Inverse instantaneous radius of curvature (m-1)
as a function axial distance (m) for (a) an abrupt bend,
(b) a matched bend, and (c) an adiabatic bend, using
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driver parameters of table 1. Peak strength is shown,
with bend occupancy of 0.65.

The bunch length   l is undergoing compression in all
three scenarios and is found by integration of equation
3. Figure 2 illustrates the evolution of   l with z.

Figure 2.Bunch length   l vs. z for all 3 bend strategies.

The evolution of the centroid for off-momentum slice
of the beam varies according to which bend scenario is
selected. Since bunch compression intrinsically requires
the velocity of the beam to systematically vary from
tail to head, velocity dispersion is an essential feature of
bunch compression.  From figure 3, it is apparent that
the abrupt turn-on of the bend has greatest dispersion
and largest ′x  upon exit from the bend, whereas the
“matched” and “adiabatic” designs have smaller
excursions and terminate the bend with little residual
centroid displacement or angle.

                           (3a)

                                     (3b)

                     (3c)
Figure 3, Evolution of centroid for the beam slice half-
way between center and head, in bend design scenarios
(a) abrupt, (b) matched, and (c) adiabatic. The solid
(non-oscillating) line in each figure represents the
instantaneous smooth limit result given by eq. (2).

5 SUMMARY AND CONCLUSIONS

In this paper we have shown the effect of three different
bending scenarios on the beam centroid for different
longitudinal slices of the beam, (and hence different
longitudinal velocities).

An abrupt turn-on of the bend induces a centroid
mismatch for off-momentum slices, and does not return
the slice to the center of the beamline upon exit of the
bend.  This would increase the requirement on pipe
radius throughout the drift compression section and
would lead to an enlargement of the spot on target if
not corrected using time dependent steering.

Matched designs in which the bend ramps at about half-
strength for half of a betatron period reduce both
maximum radius and final centroid displacement, as do
adiabatic designs in which the bend strength ramps up
and down over several betatron periods.  Adiabatic
designs appear more robust however, allowing greater
flexibility in  choice of tune, with minimal penalty in
bend length or bend strength.

The authors would like to acknowledge useful
conversations with M. de Hoon, S. S. Yu and H. Qin
regarding drift compression.
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