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Abstract
Use of microwave photonic bandgap (PBG) structures

is a promising approach to improving the performance of
rf accelerator structures in terms of better control of
wakefields. We have developed the Photonic Band Gap
Structure Simulation (PBGSS) code to study bulk
properties of electromagnetic TE and TM wave
propagation in two-dimensional (2D) PBG structures. The
eigenmodes are calculated and global photonic bandgaps
are determined. Rf accelerator applications of PBG
cavities are discussed.

1 INTRODUCTION
Since the pioneering work of Yablonovitch in the late

1980s [1], PBG structures have emerged as a growth area
for research and development [2-5]. While initial studies
of PBG structures were primarily focused on dielectric
PBG structures [1-3], metallic PBG structures [4-6], as
well as dielectric-metallic hybrids, have received
considerable attention recently, because of their
applications in rf accelerators and high-power microwave
electronics [5-7].

Two important aspects need to be studied in order to
facilitate the design of metallic PBG-based devices. One
involves the wave propagation in bulk of the PBG
structure, and the other concerns mode confinement in a
metallic PBG cavity. For analyses of metallic PBG
cavities formed by single or multiple defects in PBG
structure, finite-element codes such as HFSS [8] are
ideally suited. We developed a code to study the
dispersion properties of the wave propagating in the
infinite metallic PBG structure.
We solve an important and computationally challenging

problem of calculation of the global photonic band gaps in
metallic lattices [9]. While a number of papers dealt with
the global band gaps in dielectric lattices [2,3], only the
lowest gap for a TM mode in a square metallic lattice was
calculated [4]. We extend the calculation to wide range of
frequencies and to both square and triangular lattices.

2 PBGSS ALGORITHM DESCRIPTION
We consider the square and triangular lattices shown in

Fig. 1 ( on the figure a is the radius of the conducting
cylinder, b is the lattice spacing). The conductivity profile
in the lattice satisfies the periodic condition

( ) ( )⊥⊥ =+ xTx σσ mn
(1)

Figure 1: Scheme of PBG structure representing
(a) square lattice and (b) triangular lattice of perfectly

conducting cylinders.

where
yx yx eex ˆˆ +=⊥ is the transverse displacement, m

and n are integers, and mnT is one of the lattice

periodicity vectors.
The wave field in 2D PBG structure can be decomposed

into two independent classes of modes: the transverse
electric (TE) mode and the transverse magnetic (TM)
mode. All the field components in the TM (TE) modes
can be expressed through the axial component of the
electric (magnetic) field, which we will further denote by
ψ. Since the system is homogeneous along the z-axis, we
take the Fourier transform of ψ in axial coordinate z and
time t. The Helmholtz equation for ( )ωψ ,, zk⊥x follows

from the Maxwell equations
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The boundary conditions on the surfaces S of the
conducting poles are 0=

S
ψ for the TM mode and

0=
∂
∂

S
n

ψ for the TE mode (n is the normal vector to the

pole surface). The discrete translational symmetry of the
conductivity profile allows us to write the fundamental
solution of the Helmholtz equation in Bloch form

( ) ( ) TkxTx ⋅
⊥⊥

⊥=+ ieψψ , (3)

where T is any vector of Tmn, yyxx kk eek ˆˆ +=⊥ is an

arbitrary transverse wave number.
Eqs. (2) and (3) together with the boundary conditions

define the eigenvalue problem of finding 2
zkc/ −= 222 ωλ

as a function of ⊥k . The eigenvalue problem is solved

numerically with a newly developed PBGSS code, which
employs the standard coordinate-space finite-difference
method.
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3 RESULTS OF EIGENMODES AND BAND
GAPS CALCULATIONS

In this section, we present the results of PBGSS
calculations of the eigenfrequencies for TE and TM
modes in the two-dimensional square and triangular
lattices. For all the plots presented we set 0=zk , which

obviously does not affect the generality of the results.

3.1 TM modes
Figure 2 shows the dispersion characteristics (Brillouin

diagrams) for the TM modes. In Fig. 2, 20.b/a = and
for the square lattice a global band gap between the first
and second modes can be seen. For the triangular lattice
the band gap between the second and third modes is about
to occur. The first and the second mode are intersecting
and there is no band gap between them
To determine the global TM band gaps, we perform

extensive computations over all possible k⊥ . The results
are shown in Fig. 3. First thing to note is that for the TM
mode the zeroth-order global band gap exists below the
first mode, that is, there is a cutoff frequency. The cutoff
frequency exists even for very small conducting poles and
goes to zero logarithmically as 0/ →ba (which is
illustrated in Fig. 3 with a dashed curve continuation of
the calculated cutoff curve). Shown in Fig. 3(a) are five
lowest-order global TM band gaps for the square lattice.
The first-order global TM band gap occurs between the
first and second lowest modes. Higher-order global TM
band gaps occur between the third and fourth, fourth and
fifth, and fifth and sixth modes. There is no global band
gap between the second and third modes. Shown in Fig.
3(b) are three lowest-order global TM band gaps for the
triangular lattice. There is no global bandgap between the
first and second modes. The first-order global TM band
gap occurs between the second and third modes and the
second-order global band gap is between the sixth and
seventh modes.

3.2 TE modes
Figure 4 shows the Brillouin diagrams for the TE

modes. Two cases correspond to the square and triangular
lattices. In Fig. 4, 20.b/a = and there are no global TE
band gaps for either square or triangular lattices. This is
different from the TM case where the first band gap
occurs between the first and second modes for 1.0/ ≥ba .
We have also calculated the global TE band gaps in

both types of lattices. The results are shown in Fig. 5. For
the square lattice (Fig. 5(a)), we found that the first global
TE band gap occurs between the first and second modes.
Unlike the first global TM band gap, the lower boundary
of this band gap decreases with increasing ba / . The
higher order band gap opens and then closes between the
sixth and the seventh modes for even lower ratio of ba / .
For triangular lattice, we found more global TE band gaps
as shown in Fig. 5(b). All of these gaps tend to close with
increasing ba / except for the lowest one, which occurs

between the second and third modes. There is a global TE
band gap, between the third and fourth modes, which
appears for the lower ratios of ba / than those for the
lowest global TE band gap. Another global TE band gaps
is between the sixth and seventh modes. In contrast to the

Figure 2: Seven lowest normalized eigenfrequencies for
TM mode. Here 20.b/a = . The two cases correspond to

(a) square lattice and (b) triangular lattice.

Figure 3: Plots of global frequency band gaps for TM
mode as functions of a/b for (a) square lattice and
(b) triangular lattice. The solid dot represents the

operating point of the 17GHz MIT accelerator cavity.
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TM mode, there is no cutoff in the case of TE mode. The
first mode goes to zero at Γ point for both square and
triangular lattices. The absence of cutoff and closure of
global TE band gaps with increasing ba / resemble the
behavior of the global band gaps in the lattice of vacuum
poles in dielectric [2].

Figure 4: Seven lowest normalized eigenfrequencies for
TE mode. Here 20.b/a = . The two cases correspond to

(a) square lattice and (b) triangular lattice.

Figure 5: Plots of global frequency band gaps for TE
mode as functions of a/b for (a) square lattice and

(b) triangular lattice.

4 ACCELERATOR APPLICATIONS OF
PBG STRUCTURES

The results of the global bandgap calculations are
useful for the PBG accelerator cavity design [6]. The PBG
accelerator experiment was performed recently at MIT
[7]. The accelerator cavity was made up of a triangular
lattice of metal rods and operates in the TM mode at 17
GHz. A defect is created by one missing rode. The cavity
has the pole radius 079.0=a cm and the distance
between poles 64.0=b cm, which corresponds to

23.1/ =ba and 28.2/ =cbω . The cavity operational

point is shown by the solid dot on Fig. 3(b). The cavity
operates in the zero-order band gap (below the cutoff) and
there are no other bandgaps above, so only one mode can
be confined in the cavity, which solves the problem of
wakefields. Fig.6 shows the cross-section of the HFSS
model of the PBG accelerator cavity. The magnitude of
the electric field of the confined mode is shown in color.
The mode structure resembles the structure of the TM010

mode of conventional linac pillbox cavity.

Figure 6: Magnitude of electric field in TM010-like mode
in PBG cavity as obtained from the HFSS simulation.
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