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Abstract

The world has not heard of thee, until now...

1 INTRODUCTION

It can be proved fundamentally from the reciprocity the-
orem with which the electromagnetism is endowed that cor-
responding to each spontaneous process of radiation by a
charged particle there is an inverse process which defines
a unique acceleration mechanism, from Cherenkov radi-
ation to inverse Cherenkov acceleration (ICA) [1], from
Smith-Purcell radiation to inverse Smith-Purcell accelera-
tion (ISPA) [2], and from undulator radiation to inverse un-
dulator acceleration (IUA) [3]. There is no exception. Yet,
for nearly 30 years after each of the aforementioned inverse
processes has been clarified for laser acceleration, inverse
transition acceleration (ITA), despite speculation [4], has
remained the least understood, and above all, no practical
implementation of ITA has been found, until now.

Unlike all its counterparts in which phase synchronism
is established one way or the other such that a particle can
continuously gain energy from an acceleration wave, the
ITA to be discussed here, termed plasma inverse transition
acceleration (PITA), operates under fundamentally differ-
ent principle. As a result, the discovery of PITA has been
delayed for decades, waiting for a conceptual breakthrough
in accelerator physics: the principle of alternating gradient
acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented
[7, 8] as one of several realizations of the new principle.

Transition radiation occurs when a charged particle tran-
sits an inhomogeneous medium, often in the form of a
metal foil. To discover its inverse process for practical
acceleration, one has to make two critical steps through a
conceptual evolution. First, replace the metal foil by an un-
derdense plasma layer such that a focused TM mode with
longitudinal electric field and a co-propagating particle can
pass through the layer with negligible reflection and scat-
tering. Second, apply the principle of alternating gradient
acceleration [10] by placing the plasma layer in the region
where the particle experiences deceleration due to phase
slippage. The purpose here is to make the particle slip-
ping through deceleration phase quickly, utilizing the fact
that phase velocity is larger in plasma than in vacuum, such
that less energy would be lost in deceleration phase.

By willing to take losses momentarily in deceleration,
PITA is awarded tremendously in overall acceleration per-
formance. Unlike ICA which is limited in gradient by gas
breakdown in the passage of an intense laser, PITA utilizes
ionized gas. Unlike ISPA which requires particle beam
to stay in close vicinity of a diffractive structure such as
grating thus its performance is severely limited in practice,

PITA operates even in free space. Unlike IUA which is lim-
ited in maximum energy by strong radiative loss, PITA can
be scaled to much higher energy. Furthermore, the single
stage PITA has already been implemented in many stages
[7, 8] for acceleration over extended distances in over-sized
open waveguides [5, 6, 7, 8, 9, 10]. As such, PITA is also a
critical innovation in advanced accelerator technology.

Finally, I must point out that the concept, principle, and
analytical techniques presented here have also inevitably
shed new light on the understanding, interpretation, and
calculation of transition radiation. According to the pre-
vailing notion, transition radiation is attributed to the re-
organization of charge field as a particle transits medium
boundary [11]. Such an explanation, however, is too gen-
eral to be incorrect, yet too vague to be of little use for ei-
ther clarifying concept or carrying out practical calculation
of the process. An alternative and transparent treatment
of transition radiation as an inverse process of the inverse
transition acceleration is under preparation.

2 THEORY

In this section, we first derive TM mode of a monochro-
matic laser beam in an inhomogeneous medium and then
consider direct acceleration of a charged particle by the
longitudinal electric field of such a mode. The medium
of interest is specified by µ = µ0 and ε = ε0εr(z), where
εr(z) = ν2(z) and ν(z) = 1 + δν(z). Assuming |δν| � 1
and

∣∣dεr
dz

∣∣ � k0εr, vector potential is shown to be gov-
erned under Lorentz gauge by a wave equation of the same
usual form ∇2A + k2A = 0, except where k = k0ν(z),
k0 = ω/c, with time dependence e−iωt understood.

It has been shown [12] that TM mode in vacuum can be
derived by assuming A = Az(r, z)ẑ. Following the same
recipe, the vector wave equation is converted into a scalar
one ∇2Az + k2Az = 0, which is much easier to solve.
Seeking slowly varying envelope solution of the form

Az(r, z) = Ψ(r, z)ei
∫ z

k(s)ds, (1)

we then obtain the usual equation for the envelope

∇2
⊥Ψ + 2ik

∂Ψ
∂z

= 0, (2)

which admits the well-known fundamental mode

Ψ =
Ψ0

1 + iq
e−

ρ2

1+iq , (3)

where ρ = r/w0, q = z/zr, and zr = k0w
2
0/2 is the

Rayleigh range. The difference between k and k0 is ne-
glected in Eqs.(2,3), since it contributes only to higher or-
der corrections compared to the dominant one preserved in
the phase factor of Eq.(1).
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Given solution for A, electromagnetic fields can be de-
termined from B = ∇ × A, E = iωA + i

ωµε∇(∇ · A),
yielding for TM01 mode under paraxial approximation

Bz = Br = Eφ = 0, Bφ =
νEr
c
,

Er = − iγgEaρ

(1 + iq)2
e−

ρ2

1+iq+i
∫ z

k(s)ds,

Ez =
Ea

(1 + iq)2

(
1− ρ2

1 + iq

)
e−

ρ2

1+iq+i
∫ z

k(s)ds,

where γg = zr/w0 � 1 is the condition used when making
the paraxial approximation.

Acceleration by the TM01 mode of a charged particle
traveling along the axis, ρ = 0, is determined by

dW

dq
=
eEazr cosψ(q)

1 + q2
, (4)

where W = γmc2 is the particle energy,

ψ = ωt(z)−
∫ z

k(s)ds+ 2 tan−1

(
z

zr

)
, (5)

and t(z) = ti + (1 + 1/2γ2)(z/c) is the particle orbit.
For simplicity, γ is taken as a constant when evaluating
the right hand side of Eq.(4), which is valid, strictly speak-
ing, only if the relative change of γ remains small dur-
ing interaction. For laser propagation through an under-
dense plasma layer, we have δν(z) = −fp(z)/2γ2

p , where
γp = ω/ωp � 1, ωp = c

√
4πren0 is the plasma frequency

corresponding to the peak electron density n0 of a profile
ne(z) = n0fp(z) with fp(z) ≤ 1 and re being the clas-
sical radius of electron. It is convenient to introduce the
following profile function as a model for an ionized gas jet

fp(z) =
1

cosh2
(
z−zp
lp

) ,

since it is analytically integrable as
∫ z

−∞
fp(s)ds = lp

[
1 + tanh

(
z − zp
lp

)]
,

where lp is the half thickness and zp is the location of the
plasma layer. The phase from Eq.(5) is then reduced to

ψ = αγq + αp

[
1 + tanh

(
q − qp
βp

)]
+ 2 tan−1 q + ψi,

where the scaled parameters are defined by

αγ =
γ2
g

γ2
, αp = βp

γ2
g

γ2
p

, βp =
lp
zr
, qp =

zp
zr
.

The net energy change of the particle traveling from−∞
to∞ along the trajectory is given by

∆W = eEazrΛ, (6)

Λ ≡ Λ(αγ , αp, βp, qp, ψi) =
∫ ∞
−∞

dqF (q), (7)

F (q) =
cosψ(q)
1 + q2

. (8)

When expressed in practical units, Eq.(6) becomes

∆W [MeV] = 31
√
P [TW] Λ,

where P = πE2
az

2
r/8Z0 is the laser power, and Z0 is the

vacuum impedance.

Figure 1: Λ as a function of {αp, βp} with {αγ = 0, qp =
0} and ψi optimized everywhere to maximize Λ.

Figure 2: Λ as a function of {αγ , αp}with {βp = 0.5, qp =
0} and ψi optimized everywhere to maximize Λ.

3 PERFORMANCE

Due to phase slippage, a particle moving on the axis sees
a varying field, Eq.(8). It is well understood that the inte-
gral effect or the net energy change of the particle is identi-
cally zero, Λ = 0, in vacuum where αp = 0, regardless of
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ψi. This result is often known as Lawson-Woodward the-
orem [13, 14, 15]. We will see in this section how much
net acceleration can be achieved with αp > 0. Let’s first
examine the dependence of Λ on the five scaled parameters
through Eq.(7) and then look at a specific example given in
terms of real parameters.

Shown in Fig.1 is a contour plot of Λ as a function of
{αp, βp} with {αγ = 0, qp = 0} and ψi optimized ev-
erywhere to maximize Λ. It is noted that (1): Λ = 0 for
αp = 0, as expected; (2): ∂Λ/∂βp < 0; (3): optimal value
of αp decreases from π/2 as βp increases from 0; (4): the
absolute maximum, Λmax = 2, verified over the entire pa-
rameter space, is reached at {αγ = 0, αp = π/2, βp = 0,
qp = 0, ψi = π/2}. Shown in Fig.2 is a contour plot of Λ
as a function of {αγ , αp} with {βp = 0.5, qp = 0} and ψi
optimized. It is noted that (1): ∂Λ/∂αγ < 0; (2): the re-
duction of Λ due to finite particle energy can be neglected
if αγ � 1 or γ2 � γ2

g , a condition equivalent to requiring
that the phase slippage caused by finite particle energy is
negligibly small compared with Guoy phase shift. In addi-
tion, we note without showing the plot due to page limit,
that ∂Λ/∂qp < 0, and the most effective location to place
a plasma layer is at the waist qp = 0.

A specific example is given in Table 1 for electron accel-
eration, and the integrand F (q) of Λ from Eq.(7) is plotted
in Fig.3. For comparison, F (q) is also plotted in Fig.4 for
the same case, but without a plasma layer. It is noted that
Λ = 1 with the plasma layer and Λ = 0 without. The
effect of the plasma layer is to decrease the region over
which the particle experiences a deceleration field by en-
hancing phase slippage over that region. In the extreme
case when the thickness of the plasma layer is reduced to
0 while still maintaining an overall phase shift of π by in-
creasing plasma density, the area of the negative field re-
gion in Fig.3 would be reduced to 0, leading to Λmax = 2.

In conclusion, a new acceleration mechanism is made
transparent and established decisively from now on. Stim-
ulating discussions with Max Zolotorev about the intimate
relationship between radiation and acceleration are ac-
knowledged. This work was supported by the U.S. Depart-
ment of Energy under contract No.DE-AC03-76SF00098.

Table 1: A PITA Example

∆W MeV 31 Λ 1
W0 MeV 100 αγ 0.058
Ea GV/m 44 αp 1.23
P TW 1 βp 0.5
λ µm 1 qp 0
w0 µm 15 ψi 1.91
zr µm 707 γ 196
lp µm 353 γg 47
n0 1018/cm3 1.2 γp 30
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