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Abstract

The sum over damped modes, which provides the main
contribution to the transverse wake of the DDS, is replaced by
a Fourier-like integral of a spectral function over the
propagation band of the manifolds.  We present comparisons
to previous calculations, assessment of appropriate domains of
applicability, and applications to the SLAC structure with
matched and mismatched manifold terminations.

1.  Introduction

The recently completed prototype accelerating cavity for the
NLCTA incorporates both damping and detuning (the DDS
structure) of the higher order modes (HOM), with the
objective of suppressing the transverse wakefield experienced
by trailing bunches [1,2].  The current analysis of the structure
is based upon an equivalent circuit model whose current form
is described in [1].  We use the Bane-Gluckstern two band
model [3], extended to include the damping manifold.  The
latter is represented by a rectangular TE10 waveguide mode,
periodically shunted with a series LC circuit, with the shunt
capacitively coupled to the TE component of the two band
model.  Each section of the structure is described by nine
circuit parameters defined and determined as described in [1]
along with the beam coupling parameters (cell kick factors
[3]). In the following sections we the explain the the spectral
function method, and compare it to our previous methods.
The spectral function method is then applied to compute the
dependence of the wake function on the manifold
terminations.

2. Review of the Fundamentals of the
Wake Function Calculation

The TE and TM cell excitation amplitudes are related to the
drive beam via the circuit equations.  In matrix form and in
the frequency domain this relation takes the form:
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where the quantities in the above expression are defined in
[1]. The elements in the above 2 by 2 matrix are themselves N
by N matrices, where N is the number of cells. �H and H are
tridiagonal matrices which describe the coupled chains of
TM and TE resonant circuits, while Hx is the tridiagonal
matrix with vanishing diagonal elements which describes the

TE-TM coupling.  R, which describes the manifold, is also
tridiagonal, while G, which describes the coupling of the TE
chain to the manifold, is diagonal.  The diagonal elements of
H, G, and R are frequency dependent. Corresponding to the
above, each element of the column vectors are themselves N
element vectors.  To further condense the notation we may
also write Eq. (1) in 2N by 2N matrix form

Ha f a f B− =− −2 2 (2)

The drive beam, represented by the N component vector B,
couples only to the TM mode.  We take it to be a point charge
moving at velocity c and normalize it per unit charge per unit
displacement.  With this  understanding it takes the form

B f c K L j f c nn s
n

s
n= −( / ) exp[ ( / ) ]4 2π π (3)

where L is the periodicity length, Ks
n the Bane-Gluckstern

kick factor evaluated at the synchronous mode and fs
n  the

synchronous mode frequency,  both evaluated for a uniform
structure based upon the n'th cell [3].  The transverse wake-
function (ie wake potential per unit length) for a particle
trailing a distance s behind a velocity c drive bunch (per unit
drive bunch charge per unit drive bunch displacement) may be
written

W s Z f j js c f j df( ) [ ( ) exp[( / )( )]= − −∫ ε π ε2         (4)

where H is a positive infinitesimal quantity and the wake
impedance Z is given by
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with the 2N by 2N matrix 
~
H given by

~
( )H H f H= − − −1 2 1 (6)

From causality Z(f) can be analytically extended to the LHP,
and singularities on the real axis are avoided in Eq. (4) by
integration over f just below the real axis as indicated in Eq.
(4). Because W is real, we also have Z(f) = Z*(-f*), for f in
the LHP. Because Z is real for sufficiently low frequencies on
the real axis, Z*(f*) provides an analytic extension of Z into
the UHP. Since the Z so defined is discontinuous across the
real axis where Z is complex, cuts are introduced there to
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render Z single valued on what we call the "physical sheet" of
its Riemann surface.  It also satisfies Z(f) = Z(-f), that is, it is
an even function of f in the complex plane.  We note that Z is
actually a four valued function arising from the sign
ambiguity in sinI1 and sinIN, quantities which appear in R11

and RNN respectively [1].  (The cosIn, defined by Eq. (4) of [1]
are single valued analytic functions, but the corresponding
sines are defined only by the trigonometric identity,
sin2+cos2 = 1.) Damped modes appear as complex poles on
sheets of the Riemann surface adjacent to the physical sheet.

3. The Spectral Function Method for Computing
the Wake Function

Because the equivalent circuit wake function contains a small
non-physical precursor on the [-NL,0] interval [3], it proves
to be convenient to define a "causal" wake function by

                W s s W s W sc( ) ( )[ ( ) ( )]= − −θ (7)

Wc equals W for s > NL and vanishes for negative s.  In the
interval  [0,NL] W(-s) would be zero in the absence of a
precursor.  Hence Eq. (7)  represents a smooth way of
suppressing the precursor, and Wc is more  likely to portray
the actual structure than the strict equivalent circuit  model.
From Eq. (4) and the symmetry properties of Z noted in the
previous section we have
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which leads to  
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To include the contribution of poles on the real axis (with real
residue)  in Eqs. (9) and (10) we interpret

Im{( ) } ( )f j f f f± − = −−ε πδ0
1

0# (11)

and define 4Im{Z(f+jH)} as the spectral function S(f) of the
wake  function.  Thus we have

W s s S f s c f dfc( ) ( ) ( )sin[( / ) ]=
∞

∫θ π2
0

(12)

We note further that the usually displayed wake envelope
function �W (s)  associated with Wc is given by

W s s S f s c f dfc( ) ( ) ( )exp[( / ) ]=
∞

∫θ π2
0

(13)

 For the undamped case, which in the context of the NLCTA
design is obtained by setting the coupling matrix G to zero, Z
is real on the real axis and contains a set of poles on the real
axis at the modal frequencies. The spectral function is then
simply a sum of delta functions:

S f K f f K dn dfp p n
p

( ) ( ) /= − =∑2 2δ (14)

where the fp are the modal frequencies, n(f) is the number of
modes with  frequency less than f, and the Kp are called modal
kick factors.  The spectral function and the modal sum
methods are thus formally identical.  In the presence of
damping, Z is complex on those portions of the real axis
which lie in the propagation bands of the manifolds, and poles
which would lie on that portion of the real axis in the absence
of coupling to the manifold split into complex conjugate pairs
on the non-physical sheets accessed by analytic continuation
through the cuts.  When the coupling is weak so that their
position can be found by perturbation theory, their distance
from the real axis is small compared to their separation, and
the spectral function has sharp narrow peaks in place of the
delta functions of the undamped case.  As the coupling
strength increases these poles move further from the real axis,
the peaks broaden, and while the peaks generally remain quite
discernable, the behaviour is relatively smooth.  The spectral
function can be computed as a function of frequency by direct
evaluation of Eq. (5).  A combination of an N by N matrix
inversion and the solution of a 2N system of linear equations
is involved.  In the weak coupling case it is relatively simple
to determine the modal frequencies, eigenvectors and Q values
and hence to compute the damped modal sum.  In contrast a
large number of frequency points is required to adequately
delineate the narrow peaked spectral function.  The situation is
reversed in the strong coupling case.  The process of
determining the modes has proved to be quite difficult and
computer time consuming [1], while on the other hand the
number of frequency points required to adequately describe
the more smoothly varying spectral function becomes more
reasonable. The wake functions computed from the modal
expansion and from the spectral function have been compared
for the single example of the former which has been carried
out and found to be in excellent agreement [4].

4.  Applications of the Spectral Function Method
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Fig 1: Spectral Function and integral for Matched HOM
Coupler and 2KGn/Gf (Shown Dashed)
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The spectral function method has so far been employed
principally to explore the effect of manifold mismatch on the
DDS wake function.  We begin with the spectral function for
the matched manifold case, shown in Fig. 1.  We have shown
the smoothed spectral function, 2Kn n/ f, for the undamped
case (ie the G set equal to zero case) on the same curve.  (The
unsmoothed spectral function, 2Kndn/df, is a sum of delta
functions as noted before.)  One sees that the effect of the
damping is to replace the delta functions by broadened peaks
which produce an oscillation about the smoothed umdamped
spectral function.  The wake envelope function for the
matched DDS structure and, for comparison, the
corresponding function for the NLCTA DT structure are
shown in [5].  There the recoherance peak of the DT is seen to
be strongly suppressed by the damping.
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Fig 2: Spectral Function For Fabricated DDS and its Integral

A series of investigations demonstrated that the wake function
was seriously degraded by small mismatches of the manifolds,
especially on the output (hence downtapered) side.
Accordingly a major effort was made to design mitered bend
type structures to match the manifolds to  standard waveguide
(WR62 was used).  The results achieved for both the input and
output side are given in [4].  In order to test the structure in
the ASSET experiment it is necessary to attach windows and
loads. The available windows were unfortunately not well-
matched in the 14 to 16 GHz band that is crucial to the
damping.  The window and manifold added
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Figure 3: Wake Function for Fabricated DDS, ASSET data for
DDS and NLCTA DT (Copper Losses Shown Dashed)

in quadrature are also illustrated in [6].  The combined
reflection coefficient for the output end of the manifold has a
minimum of .09 at 15.05 GHz rising to .37 at 14.2 and .4 at
16. Ghz.  At the input end the reflection coefficients are
similar in the upper half of the frequency range but less than
.09 for the lower half.

The effect of these reflections on the spectral function and
wake envelope function are shown in  Figs. 2 and 3.  As
compared to the matched case the oscillations of the spectral
function show a large increase in amplitude, indicating
significantly higher Qs for many of the modes, and the wake
envelope function is substantially degraded. However, even
with the degradation shown in Fig. 3, the results constitute a
considerable improvement over  the DT structure. Preliminary
ASSET experimental results have already been obtained [7],
and the experimental points have been superposed on the Fig.
3 curve.  Matched windows over the required band are in
preparation, and simulations already performed [4] indicate a
two-fold improvement in the wake function over that of the
present structure.

5.  Conclusion

The DDS described here was designed with rather crude
theoretical tools [2].  However, the well-founded theoretical
analysis given here and in [1] were carried out after the design
was complete (but prior to fabrication).  While the agreement
between the preliminary experimental results and the
theoretical predictions is imperfect, given the differences
(some planned, some inadvertant) between the theoretical
design and the structure as fabricated, the comparison suggests
that the present version of the theory provides both the
physical insight and the quantitative analysis needed to design
an improved structure, and a number of such improvements
are under consideration [4].
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