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Abstract  

We show the results of beam simulations for 
photocathode sources using a newly developed Green's 
function based code called IRPSS (Indiana Rf 
Photocathode Source Simulator). In general, a fully 
electromagnetic treatment of space-charge fields within 
simulations of photocathode sources is typically difficult 
since the beam is most often tightly bunched. The 
problem is further complicated by the inclusion of nearby 
conducting structures, i.e. cathode and cavity walls, from 
which the fields are reflected. The entire problem can be 
solved self-consistently using an electromagnetic Green's 
function method.  Since Green's functions are generated 
by a Delta function source while simultaneously 
satisfying the boundary conditions of the system, they are 
an effective tool when solving for fields within 
photocathode source simulations. Using IRPSS we show 
examples of electromagnetic field calculations and 
benchmark studies. 

INTRODUCTION 
IRPSS is a fully electromagnetic simulation code which is 
capable of modeling the physics of electron sources such 
as photoinjectors.  The novel feature of this code is its’ 
usage of Green’s function methods to compute the 
electromagnetic fields generated by the beam, i.e. space-
charge forces.  Green’s function methods allow for the 
resolution of fields due to arbitrarily tight bunches, while 
correctly incorporating the effects of the source’s 
conducting surface.  This is in contrast to other codes such 
as, PARMELA [1] which computes the space-charge 
fields electrostatically, and TREDI [2] which utilizes 
Lienard-Wiechert methods to compute the 
electromagnetic space-charge fields but can only handle 
the effects of a conducting cathode – not the side walls. 
And while, electromagnetic PIC algorithms can compute 
the time-dependent fields for arbitrary shaped conductors, 
the field resolution is limited by the choice of length and 
time scales in the simulation grid, i.e. the bunch dynamics 
must occur on length and time scales which are 
sufficiently large compared to the grid size.   
    In its’ current operating mode, IRPSS simulates the 
space-charge fields of a disk-like (zero-thickness) bunch 
for the cathode geometry shown in Fig. 1.  In this paper, 
we will show how IRPSS computes the electromagnetics 
associated with the Fig. 1 geometry.   We will also show 
recent results which illustrate how IRPSS models a bunch 
of finite size and discuss benchmarking studies of IRPSS.  
We are actively working to improve IRPSS to include the 
effects of one or more irises, which are commonly found 

in photoinjectors.  However, we will not describe those 
improvements in the present paper. 
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zê

0=z

a
rêrê
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Figure 1: Schematic of system including conductor 
geometry and accelerating bunch. 

 
Our paper is organized as follows. In Sec. 2, we 

describe the Green’s function method which IRPSS 
utilizes to compute the electromagnetic potentials for 
Fig.1.  In Sec. 3, we show the potentials computed by 
IRPSS corresponding to the design parameters of the 
BNL 2.856 GHz 1.6 cell photocathode gun.  [3]  In Sec. 4, 
we describe a series of benchmarking studies of IRPSS 
with analytical methods.  In Sec. 5, we give a summary of 
the paper.  

ELECTROMAGNETIC POTENTIALS 

Fig. 1 shows a cross-section of the cathode geometry that 
IRPSS simulates.  This geometry is assumed to be 
circularly symmetric.  The cathode is located at the point 

0=z , and the pipe radius is denoted by ar = .  In its’ 
present form, IRPSS calculates the electromagnetic 
potentials, and hence the fields, due to a beam which is 
moving in the longitudinal direction with charge and 
current densities, ( )tr ,

rρ  and ( )trJ z ,
r

, respectively.  

Future versions of IRPSS will include the effects of 
transverse currents.  However, since the current density in 
a photocathode source is predominately in the 
longitudinal direction, the simulation results should be 
quite good compared to experimental results. 

In the Lorentz gauge, the electromagnetic potentials 
due to ( )tr ,

rρ  and ( )trJ z ,
r

 are given by                                 
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These potentials satisfy the boundary conditions,                                  
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   In a previous work [3], we showed that the potentials 
can be written in terms of Green’s functions, i.e.                                        
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where ( )trtrG ′′,;,
rr

φ  and ( )trtrG A ′′,;,
rr

 are time-

dependent Green’s functions whose solution can be 
formed from an expansion which satisfy Helmholtzs’ 
Equation for the Fig. 1 geometry.  The electromagnetic 

fields, E
r

 and B
r

, can be readily computed from the 
potentials. 
  

 BEAM SIMULATION STUDIES 
Eq. (3) forms the basis of the IRPSS electromagnetic field 
solver.  For a given ( )tr ,

rρ  and ( )trJ z ,
r

 which satisfy the 

continuity equation, the potentials, and hence the fields, 
are automatically solved.  IRPSS constructs the charge 
and current densities of the beam using slices, i.e. zero 
thickness disks.  In particular, the choice of ( )tr ,

rρ  and 

( )trJ z ,
r

which is utilized in IRPSS is of the form 
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where ( )tri ,σ  is the charge per area of the ith slice, ( )tzi′′  

is the longitudinal location of the ith slice, and N is the 
number of slices on the simulation. 
   To illustrate this numerically, we show the results of 
IRPSS corresponding to the parameters of the BNL 1.6 
cell photocathode gun [3]. We make the simplifying 
assumption that the trajectories, ( )tzi′′ , are specified by 

the external rf-field.  Physically, one could view this 
simulation as the space-charge fields being small 
compared to the external rf-fields.   Future simulations 
with IRPSS will involve incorporating the space-charge 
effects when calculating ( )tzi′′ . 

   The trajectory of each of the slices can be computed 
from the relativistic equations of motion for the slice in   
the external rf-field. 

                        ez mPdtzd =′′                             (5a)              

         ( ) ( )ϕω +′′−= tzkeEdtdPz sincos0 .             (5b) 

The head of the bunch which is injected at time t=0 has a 
trajectory which is shown in Fig. 2.  The red curve in Fig. 
2 denotes the slices trajectory  ( ) λτz ′′  where fc=λ is 

the free-space wavelength of the injector, and the blue 
curve shows the light line.  

 
 
Figure 2: Plot of the bunch trajectory (red) and light line 
(blue) using the BNL 1.6 cell photocathode gun [3] 
parameters. 
 
   In Figs. (3a) and (3b), we show the potentials for two 
cases: 1) the bunch has zero thickness and 2) the bunch 
has a 10 ps bunch length.  For the case of zero thickness, 
we only need one slice to model the bunch.  However, for 
the case of the 10 ps bunch, multiple slices are necessary.  
For this case, we assumed that the bunch is uniformly 
distributed in the z-direction over its’ bunch length, and 
we performed simulations using N=10 and N=30 slices.  
Since the beam is short compared to the rf period, we 
assumed that each ( )tzi′′  was identical to ( )tz1′′  except that 

it was displaced in time, i.e. ( ) ( )Nittztz bi /)1(1 −−′′=′′  

where bt =10 ps is the bunch length.  The radial charge 

density of the slice is assumed to be a quadratic function, 
i.e. 

         ( ) ( ) ( )( )222 12, bbbi rrrrrQtr −−= θπσ             

(6). 
    

                    

                     
 
Figure 3: Plots of (a) normalized φ  and  (b) normalized 

zA  for 0.1=tω and brr =  for a single slice (black), 

N=10 slices (red), and N=30 slices (green with dots). 
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Figs. 3(a) and 3(b) show the potentials φ  and 

zA normalized to ( ) 1
0

−aE and ( ) 1
0

−caE  respectively, as a 

function of λz  at 0.1=tω and brr = .  The black curve 

represents the case of a zero thickness bunch modeled 
with one slice.  The red curve and green curve with dots 
represents the 10 ps bunch length case using N=10 and 
N=30 slices, respectively.   The black arrows on the z-
axis denote the location of the front and back of the 
bunch.  It is obvious from Figs 3(a) and 3(b) that it is 
necessary to model a 10 ps bunch with multiple slices 
since the single slice method would overestimate the 
electric field by at a factor of ~2-3.  Moreover, the figures 
show that a 10 slice model yields excellent results since 
the N=10 and N=30 cases agree extremely well.  We are 
actively working on particle simulations using the fields 
computed from the multislice model.  
 

BENCHMARK STUDIES 
We have also been running a series of benchmark studies 
of the code.  These studies include comparisons to 
analytical results as well as to other codes.  We show an 
example of one benchmark, which was a comparison of 
IRPSS to an analytical system.  In the IRPSS simulation, 
we calculated the potentials for a single disk slice of 
charge Q being emitted at time t = 0 from the cathode 
with a uniform velocity v.   The analytical system 
consisted of two disk bunches, one with charge Q moving 
with velocity v, and an image bunch of charge –Q moving 
with velocity –v.  In the analytical system, the two 
bunches intersect at t = 0.  In certain regimes of space and 
time, such as when reflection from the side wall has not 
occurred (t < 2ac for r = 0) and when the electromagnetic 
transient shock front has passed (z < ct), IRPSS and the 
analytical case will agree exactly.  
  Figs. 4(a) and 4(b) show a comparison of the normalized 
potentials for the analytical case (red) and IRPSS (blue) at 
r =0 and at a time before reflection from the side wall has 
occurred.  It is obvious from the figures that for short 
distances, i.e. z < ct, IRPSS and the analytical case are in 
excellent agreement (<1%).  At the point z = ct, which for 
the figures corresponds to 3.0≅λz , the IRPSS 

potentials go to zero which correctly characterizes the 
causality condition of the potentials.  The point z = ct is 
the electromagnetic shock at the front of the bunch.  The 
ability of IRPSS to resolve this discontinuity is a direct 
consequence of the Green’s function method. 
 

SUMMARY 
In summary, we have shown how the Green’s function 
based algorithm, IRPSS, can be used for simulating the 
electromagnetic fields within a photocathode source.   
Specifically, we have computed the electromagnetic 
potentials for the parameters corresponding to the BNL 
2.856 GHz 1.6 cell photocathode gun using a multislice 
method.  We have also shown excellent benchmark results  

 
Figure 4: Plots of (a) normalized φ  and  (b) normalized 

zA  for the analytical case (red) and IRPSS (blue). 

 
that demonstrate not only IRPSS high-accuracy, but also 
its’ ability to resolve the transient effects such as the 
electromagnetic shock near the front of a bunch.  We are 
working to utilize these fields for extensive multiparticle 
simulations of experimental sources and comparisons to 
other codes.  In the future, IRPSS will be improved to 
include the effects of irises, as well as to self-consistently 
calculate the trajectories due to both the external fields 
and the space-charge fields. 
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