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Abstract

The electromagnetic field solver GdfidL has been ex-
tended to also run efficiently on loosely coupled parallel
systems, such as massive parallel processors and clusters
of workstations. The computational volume is subdivided
such that each processor has about the same computational
and memory load. This is achieved even for highly irregu-
lar geometries.

When computing wakepotentials, GdfidL uses a hollow
beam, which excites the same wakefields as a linecharge
near the axis, but which travels very near to the inhomo-
geneties. This reduces the error due to the grid dispersion,
especially when computing devices with a low wakepoten-
tial, such as tapers.

A new solver to compute lossy eigenvalue problems has
been implemented. The solver is capable of finding a whole
spectrum of damped resonances in cavities with absorbers,
in a single run.

1 PARALLEL COMPUTATION

The Finite Difference Method in cartesian coordinates is
easily parallelised, since the subdivision of the total rectan-
gular computational volume is a no-brainer, assuming one
restricts oneself to rectangular subvolumes. One just has
to partition the grid such, that each processor has about the
same number of gridcells. This approach works well, when
electromagnetic fields need to be computed in a large frac-
tion of the volume.

However, most realistic RF-devices, if computed in a
rectangular volume, do not lead to a grid where most grid-
cells are filled with vacuum or a dielectric. The opposite is
the case: Complicated devices, for which the computation
inherently is time consuming, have an enclosing rectangu-
lar box of which 90% or more is free of fields. If one subdi-
vides such a volume into as many subvolumes as there are
processors, most processors will run idle since their parts
of the volume are uninteresting.

There is a way out: You won’t find in the ten command-
ments, that each processor is limited to working on a sin-
gle subvolume. If we subdivide the total volume in many
more subvolumes than we have processors, we can discard
the subvolumes where no fields need to be computed, and
spread the remaining ones evenly over the available pro-
cessors. This approach is halfway between classical Finite
Difference Grids and the complicated topology of Finite
Element Meshes.

For a typical example, in figure 1 we present a model of
a synchrotron cavity.

Figure 1: Above: A model of a synchrotron cavity with
attached waveguides and tuning plungers. Since the attach-
ments are at different heights, no symmetry plane exists.
In this case, less than 10% of the computational volume
is filled with vacuum cells. The total number of grid cells
used is about 16 millions. Below: The same model with
different colours, indicating the used subvolumes. The total
volume is subdivided in 8x24=192 subvolumes, of which
122 can be discarded, since they do not have a single vac-
uum cell. About 3 GBytes of RAM and six hours wall
clock time on an eight processor PC Cluster (total cost
8.000 USD) are needed to accurately compute the first 120
resonant fields.

1.1 Local field computation

The core of the Finite Difference Method is the discreti-
sation of the curl-operators. With these discretised curl op-
erators, one computes time dependent fields (FDTD) via
the discretised form of
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and one finds resonant fields in lossfree structures by
searching for the eigenvalues of the discretised form of
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Most of the CPU-time is spent in applying these discre-
tised curl operators. However, they are quite easily paral-
lelised. For example, when performing a FDTD calcula-
tion, the algorithm for each subvolume is:
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The tangential H-components at the lower boundaries of
the local volumes must be sent to the neighbour volumes
in negative directions. Correspondingly, the tangential E-
components at the upper boundaries must be sent to the
neighbour volumes in positive directions. For correct re-
sults, the tangential components from a neighbour in eg.
x-direction must be received before data can be sent in eg.
y-direction.
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Figure 2: The blue lines and circles represent the electric
field components in a local volume. The red ones repre-
sent the magnetic field components. The tangential E field
components at the upper boundaries of the local volume
(thick blue) and the tangential H field components at the
lower boundaries (thick red) can be computed from the lo-
cal information. These components are sent to the neigh-
bour volumes. The tangential E field at the lower bound-
aries (dashed blue) and the tangential H field at the upper
boundaries (dashed red) cannot be computed from the lo-
cal information. These components are received from the
neighbour volumes.

2 WAKE COMPUTATION WITH A
HOLLOW BEAM

Normally, a wakepotential computation for a three di-
mensional structure is carried out by exciting the fields by
discretising the real exciting bunch at its real position, near
the axis. Because of dispersion errors, the computed pri-
mary field of a relativistic charge will not be exactly or-
thogonal to the direction of flight [1]. It will somewhat
lag behind the charge, giving rise to an effect similiar to
CHERENKOV-radiation. The lag grows with the distance
from the charge.

Because of this lag, wakepotential computations in rota-
tional symmetric structures most often are not performed
by exciting with a linecharge at the center, but with a suit-
able hollow charge traveling at the outermost radius of the
beampipe. This is allowed, since in circular symmetric
structures, a hollow circular-cylindrical charge excites the
same fields as a linecharge, at least outside the cylinder.
Since the wakepotentials are dependent only on the fields
that are scattered from the inhomogeneities outside of the
cylinder, the wakepotential of a hollow charge is the same
as the wakepotential of a linecharge. The suitable charge
is a single circular sheet charge, independent of the coor-
dinate	 and with the same z-dependence as the real line
charge. Since the hollow charge has a smaller distance to
the scattering inhomogeneities, the primary field has less
chance to spread due to the dispersion errors.

In the general case, when the beampipe cross section is
not a circle, a single sheet charge is not sufficient to excite
the same wakefields as the original line charge. One needs
at least two sheets. These two sheets should nestle to the
beampipe, giving the primary field of the sheets the least
possible chance to spread erroneously.

Figure 3 illustrates the field of the equivalent sheets in
an elliptical like beampipe, figure 4 illustrates an achieved
error reduction when computing the wakepotential of a ta-
per.

Figure 3: The two sheet charges just entering a taper. The
field between the charge and the wall is a better approxi-
mation of the real field, than if one would discretise a line
charge near the axis. The ratio
�� is 5.
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Figure 4: The computed wakepotential of a smooth ta-
per, with an opening angle of 13 degrees. The three
thinner curves are the computed short range wakepoten-
tials when the ratio of the charge length to grid-spacing is

�� � �� ��� �� respectively, and the exciting charge is a
line charge on the axis. The amplitude decays when a finer
mesh is used. The thick green curve is the computed wake-
potential when a hollow beam is used, and the ratio
�� is
5. The quality of that solution is somewhere between the
quality of 
�� � � and
�� � �� of the conventional
algorithm. Since the memory consumption grows with the
third power of
��, and the needed CPU-time grows with
the fourth power, the gain in efficiency is five or more.

3 EIGENVALUES OF DEVICES WITH
LOSSY DISPERSIVE MATERIALS

When computing resonant fields in structures with ab-
sorbers, one could search for the eigenvalues of the discre-
tised form of
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where now� and/ or� are complex. The drawback of this
is that no efficient algorithm for large numbers of sought
eigenvalues is known, when the number of gridcells be-
comes large. But this is not the only possible eigenvalue
equation. For example, one may search for the eigenval-
ues����� of the lossy FDTD-operator. When the losses are
described via complex material parameters� and�, that
eigenvalue equation may be written as
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Because the region in the complex plane where all eigen-
values are located is known a priori to be the inside
of the unit circle, the highly efficient SAP-algorithm of
Tückmantel[2] [3] can be used almost unchanged. The
SAP algorithm basically starts with a set of random vectors
and filters out the contribution of the unwanted eigenvec-
tors in these vectors by multiplying with a matrix-polynom.

The roots, the minima, of this polynom have to spread over
the region of the unwanted eigenvalues. The only needed
modification of the T¨uckmantel algorithm is finding these
complex roots suitable distributed in the region of the un-
wanted eigenvalues. Since one normally is interested in the
first few resonant fields, the ones with lower resonant fre-
quencies, one also knows that these eigenvalues� ���� are
very near to the unit circle. Since the real part of� is known
to be small, its imaginary part also cannot be large for res-
onances with realistic Q-values. The polynom therefore
should be small everywhere in the unit-circle, except near
the wanted eigenvalues. For a given number of gridcells,
the computational load to solve this eigenvalue problem is
about ten times the load of the lossless case.

Actually, the matrix multiplication in equation 5 is just
one FDTD-step. It is not necessary to implement that ma-
trix times vector operation from scratch, if one already has
a routine to perform a single FDTD-step. That routine just
has to be rewritten to work on complex vectors instead
of real ones. Therefore, since GdfidL can compute time
dependent fields in dispersive media, it can also compute
eigenvalues in devices with such materials.

4 CONCLUSION

Most capabilities of GdfidL[4], ie. computation of res-
onant fields in lossfree or lossy, possibly dispersive me-
dia, with periodic boundary conditions etc., computation
of scattering parameters and wakepotentials, are now also
available on high performance massive parallel systems, as
well as on less expensive clusters of workstations.

A better wakefield excitation enables more accurate
wakepotential computations, especially for devices with
small wakepotentials, such as tapers.

An stunningly simple, yet highly efficient algorithm for
computing resonant fields in lossy devices is implemented.
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