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Abstract
The general method for the field determinations in peri-

odical structures has been developed. The field distribution
of the travelling wave or standing wave mode for arbitrary
phase shift in arbitrary passband is expanded over all 0-
and π- modes field distributions. The resulting eigen value
problem is the general dispersion equation of the structure
for any passband. Considering such well known accelerat-
ing structures for high energy range as Coupled Cells Struc-
tures (CCS), such as SCS, ACS, APS, CCDTL, and DAW
structure, it is founded the common equation for operating
dispersion curve. The equation parameters are driven from
the field distributions of four modes, limiting the operat-
ing passband. As compared to classical Knapp’s equation
for coupled cavities, the equation proposed is more com-
plicated, but simultaneously describes both narrow (CCS)
and wide (DAW) passband structures. The differences in
equation parameters for different structures are presented
and particularities of the structure analysis are discussed.

1 INTRODUCTION
The coupled cavities model [1] is widely used for de-

scription of CCS structures. This model is easy for treat-
ment and describes the structure well if one can distinguish
in the period of the CCS structure the clearly defined cells.
Such structures are the Side Coupled Structure (SCS) [2],
the Annular Coupled Structure (ACS) [3], Alternating Pe-
riodic Structure (APS) [4] or Coupled Cell DTL (CCDTL)
[5] one with enough narrow operating passband. For the
wide passband structures, like Disk and Washer (DAW) one
[3], or Cut Disk Structure (CDS) [6], the coupled cavities
model is at least not evident. Nevertheles, all structures,
mentioned above, are compensated structures. To gener-
alize the description of such quite different structures, we
have to consider it from general point of view as periodical
structures.
The method for the field description and frequency deter-
mination in periodical structures has been developed before
[7]. Some results of applications are considered below.

2 THE METHOD FOR THE FIELD
DESCRIPTION

Let simulate and store for the structure under investiga-
tion a set of field distributions for 0- and π-type modes.
In the structure with symmetry plane 0-type modes can be
calculated considering one half of the period in conditions
(ee) ((e) at z = 0 and (e) at z = d/2) and (mm). The
π-type modes should be calculated in conditions (em) and
(me). For the DAW structure an example of such set is

Figure 1. The basis of trial functions for the DAW
structure. 0 modes - (ee), (mm) and π modes (em), (me).

shown in Fig. 1. Considering these four families of field
distributions (functions), (ee), (em), (me) and (mm), as a
basis of trial functions for variational approach, let repre-
sent the complex filed amplitude ~E = <e ~E− ι=m~E of the
travelling wave with the phase shift per period θ 6= 0, π in
an arbitrary passband as:
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Nee
∑

n

cee
n

~Eee
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∑
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n
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The expression:

ω2 =

∫

V
1

µ0

rot ~E∗rot ~EdV + IS

2
∫

V ε0 ~E∗ ~EdV
, (2)

where the boundary intergral IS is required for Floquet
boundary conditions at S1, z = −d/2 and S2, z = d/2

IS =

∫

S1

~ν[( ~Ee−ιθ/2 + ~E∗eιθ/2)
1

µ0
(rot ~E∗eιθ/2 +

+rot ~Ee−ιθ/2)]dS +

∫

S2

~ν[( ~Eeιθ/2 + ~E∗e−ιθ/2)

1

µ0
(rot ~Eeιθ/2 + rot ~E∗e−ιθ/2)]dS,

is variational one for the problem of the travelling wave
propagation in symmetrical periodic structure without
losses. Substituting (1) in (2) and following to a standard
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variational technique, one come to the generalized symmet-
rical eigen-value problem:

AC − k2BC = 0, (3)

with square block-type matrixes A and B:
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Coefficients of these matrixes are for blocks
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ee, A
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3 DISPERSION EQUATION
The equation (3) represents the dispersion equation of

the periodical structure in terms of coupled modes for ar-
bitrary passband. If we take into account N = Nee +
Nem + Nme + Nmm modes, we can consider min(Nee +
Nmm, Nem + Nme) passbands simultaneously [7]. For
compensated structures the operating dispersion curve con-
sists from two branches and at least four modes, which
limit these branches, are required. All high-energy acceler-
ating structures have operating pi-mode, so operating (ac-
celerating) mode ~Ea with wavevalue ka belongs to (em)
group (to have the strong electric field in the accelerating
gap). The coupling π-mode ~Ec, kc has the conjugated par-
ity of the field distribution and belongs to the (me) group.
Both of two 0-modes ( ~E0

1 with k01 and ~E0
2 with k02), in all

high-energy CCSs satisfy the boundary conditions of elec-
tric wall in the middle of accelerating gap, so, belong to the
(ee) group. Restricting the field description (1) with these

modes - ~E0
1 , ~E0

2 , ~Ea, ~Ec, one get the dispersion equation
for the description of the operating passband of the high-
energy CCSs as the fourth order determinant:
∣
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where C = (1 + cosθ), a13, a23, a34 - the same terms as
in the upper triangle of the determinant, and, in accordance
with previous section,

Ie
1 = Ve( ~E0

1 , ~Ea), Ih
1 = Vh( ~E0

1 , ~Ea), I2 = Se
h( ~Ea, ~E0

1 ),

Ie
3 = Ve( ~E0

2 , ~Ea), Ih
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2 , ~Ea), I4 = Se
h( ~Ea, ~E0

2 ),

I5 = Se
h( ~Ea, ~Ec), Ve( ~E1, ~E2) =

ε0
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∫

V1

~E1
~E2dV,

Vh( ~E1, ~E2) =
ε0
W0

∫

V1

rot ~E1rot ~E2dV,

Se
h( ~E1, ~E2) =

2ε0
W0

∫

S2

~ν[ ~E1, rot ~E2]dS.

Deriving this common dispersion equation, we don’t use
any particular information about structures - just consider
the field parity of 0- and π-modes. It are common for all
high-energy CCSs and reflect the usage of the TM0-like
modes.
The equation proposed is match more complicated as com-
pared to the Knapp’s equation [1]:

(γ cos
θ

2
)2 = (1−(

ka

k
)2 +γa cos θ)(1−(

kc

k
)2 +γc cos θ),

(4)
where γ - is the coupling coefficient, γc, γa - the neighbor
coupling coefficients for accelerating and coupling cells.
But the proposed equation realized the multi-mode descrip-
tion of the field and describes well both narrow and wide
passbands.
At the Fig. 2 the field distributions and dispersion curves

for two options of the APS structure are shown. The
dispersion curves were calculated directly at first, by us-
ing the high precision FEM (second order approximation)
codes [9] with the Floquet boundary conditions, and after
that with the decomposition (1) with four modes into ac-
count. For narrow band APS structure the frequency dif-
ference is of order 10kHz for all θ and is inside the plot
resolution. For the wide band DAW structure the equa-
tion proposed also well enough describes the operating dis-
persion curve. At Fig. 3 dispersion curves, obtained in
the same way as for APS structure at Fig. 2, are shown
for different cavity radius values R. The R is an addi-
tional free parameter in the DAW structure and for differ-
ent R different shape of the curve can be obtained. For
R/λ0 = 0.66, ∂f t/∂θ < 0, 0 < θ < π, (DAW1 option
at Fig. 3), for R/λ0 = 0.73, ∂f t/∂θ = 0, 0 < θ < π/2,
(DAW2 option) and for R/λ0 = 0.81, ∂f t/∂θ > 0, 0 <
θ < 2π/3, (DAW3 option). The frequency difference of
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Figure 2. The field distributions (left) and dispersion
curves for APS structure. APS1 - aperture radius

ra = 3.0cm, ra

λ0

= 0.13, APS2 - ra = 6.0cm, ra

λ0

= 0.26.

Figure 3. The dispersion curves for DAW structure. 1 -
R
λ0

= 0.66, 2 - R
λ0

= 0.73, 3 - R
λ0

= 0.81.

order ≤ 8MHz takes place for DAW3 option at the bot-
tom branch f b of the curve for θ ≈ 2π

3 - for wide band
DAW structure even for four modes field expansion the in-
fluence of the higher TM0-like passbands takes place.
Parameters of the dispersion equation for different struc-

tures are listed in the Table 1. The equation parameters
are obtained in the single way from the fields distribution

Table 1. Parameters of the dispersion equation for
different structures.

APS1 APS2 DAW1 DAW2 DAW3
k01/ka 0.980 0.920 0.574 0.515 0.463
k02/ka 1.015 1.044 1.304 1.203 1.091
Ie
1 0.742 0.750 0.477 0.419 0.367

I2/k2
a 0.014 0.058 0.160 0.154 0.144

Ie
3 -0.663 0.592 0.684 0.638 0.580

I4/k2
a 0.010 -0.026 -0.240 -0.143 -0.055

I5/k2
a 0.017 0.066 0.371 0.388 0.398

~E0
1 , ~E0

2 , ~Ea, ~Ec - it is the big advantage of the equation pro-
posed. But not all parameters are independent. For exam-
ple, the relationship takes place:

I2 = 2Ih
1 + 2k2

01I
e
1 , I4 = 2Ih

3 + 2k2
02I

e
3 .

The coupling integral value I5/k2
a represents [8] the group

velocity βg value at the operating π mode:

βg

β
= |

π
∫

V1

(ε0 ~Ea
~Ec − µ0

~Ha
~Hc)dV

4W0
|, (5)

which is related with coupling coefficients as βg

β =
πγ

4
√

(1−γa)(1−γc

. Usually in the analysis of the field stabil-

ity in the structure against manufacturing and tuning errors
the influence of frequencies deviations δfa, δfc and cou-
pling coefficient deviation δγ is considered as independent.
If there exists the perturbation with the volume δV in the
structure, one can derive with perturbation theory:

δfa

fa
∼

∫

δV

(H2
a − E2

a

η2
)dV,

δfc

fc
∼

∫

δV

(H2
c − E2

c

η2
)dV,

δγ

γ
=

δβg

βg
∼ |

∫

δV

(HaHc −
EaEc

η2
)dV |, η =

√

µ0

ε0
.

For the narrow band structures the fields distributions
~Ea, ~Ec overlap in the small part of the period volume
(see, for example, Fig. 2). It results in relatively low
βg ∼ γ ≈ 0.04 value, but the assumption for indepen-
dent δfa, δfc and δγ influence works well. For wide band
structures (DAW, CDS) the distributions ~Ea, ~Ec overlap
in the main part of the period (see Fig. 1), resulting in
βg ∼ γ ≈ 0.4, but during the stability analysis the correla-
tion between δfa, δfc and δγ should be taken into account.
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