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Abstract 
 Phase mixing of chaotic orbits exponentially 

distributes the orbits through their accessible phase space. 
This phenomenon, commonly called "chaotic mixing", 
stands in marked contrast to phase mixing of regular 
orbits which proceeds as a power law in time. It is 
inherently irreversible; hence, its associated e-folding 
time scale sets a condition on any process envisioned for 
emittance compensation. We numerically investigate 
phase mixing in the presence of space charge, distinguish 
between the evolution of regular and chaotic orbits, and 
discuss how phase mixing potentially influences 
macroscopic properties of high-brightness beams. 

1 INTRODUCTION 
We adopt the viewpoint that, under the influence of 

space charge, the evolution of beams, and of confined 
nonneutral plasmas in general, may be understood in 
terms of phase mixing of the constituent particle orbits.  
For example, linear Landau damping is merely phase 
mixing of regular orbits [1], a process by which initially 
neighboring orbits diverge secularly, i.e., as a power law 
in time [2].  A given space-charge potential may or may 
not support a population of globally chaotic orbits, i.e., 
orbits that wander over a large portion of their accessible 
phase space.  Initially neighboring globally chaotic orbits 
fill their accessible phase space exponentially, a process 
known as "chaotic mixing" that was initially conceived in 
the astrophysical context of galactic dynamics [3,4].  
When a substantial population of globally chaotic orbits 
exists, it dissipates correlations irreversibly.  In beams the 
consequence is an irreversible emittance growth.  
Inasmuch as chaotic mixing is irreversible and acts 
exponentially, it is essential to identify conditions for its 
presence in beams, and to quantify the time scale of the 
associated dynamics. 

2 THEORETICAL ESTIMATE 
 A semianalytic theory exists that relies on assumptions 

of ergodicity and a microcanonical distribution to estimate 
the largest Lyapunov exponents, i.e., the chaotic-mixing 
rates, in lower-dimensional, e.g., fully coarse-grained, 
time-independent Hamiltonian systems [5].  Chaos arises 
generically from a parametric instability that can be 
modeled by a stochastic-oscillator equation; linearized 
perturbations of a chaotic orbit satisfy a harmonic-
oscillator equation with a randomly varying frequency.  

The underlying assumptions are, strictly speaking, invalid, 
yet the theory commonly yields estimates that are good to 
within a factor ~2 [6]. 

Applied to space-charge potentials, the theory yields an 
estimate of the chaotic-mixing rate  as: 
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focusing frequency and the plasma frequency at the 
system's centroid, respectively,  is the density normalized 
to the centroid density, and "〈q〉" denotes a phase-space 
average of quantity q weighted by the microcanonical 
ensemble.  In a system that is moderately out of 
equilibrium, one would expect to have  ~ 1 typically, for 
which /f ~ 0.82, with f  1/2

��� � representing the 
"dynamical frequency", i.e., the average orbital frequency.  
Thus, in such systems, the chaotic-mixing time scale is 
roughly one dynamical time.  Thus, for one to be 
reasonably sure of its efficacy, a process of emittance 
compensation, i.e., removal of correlations within the 
beam, should be completed within a plasma period as 
measured from the source of the correlations.  

3 NUMERICAL EXPERIMENTS 

3.1 Equipartitioning 
In a recent computational study using the 2-1/2 D 

version of the particle-in-cell code WARP, we discovered 
strong evidence that chaotic mixing is intimately 
connected with equipartitioning in beams [7].  This work 
concerned a highly space-charge-dominated, direct-
current, cylindrical beam in which the initial momentum 
space reflected an anisotropic pressure such that pxx=2pyy.  
As the beam evolved, the pressure became increasingly 
isotropic on a rapid time scale.  Though the relaxation 
time for two-body collisions in this beam corresponds to a 
propagation distance ~1 km, the beam equipartitioned in 
only ~5 m, followed by anisotropic pressure oscillations 
that largely damped by ~50 m.  The underlying dynamics 
is manifestly collisionless.  The equipartitioning time 
scales were seen to correlate with the evolution of initially 
localized ensembles of particles.  These ensembles 
expanded exponentially with an e-folding "time" ~2 m, 
which is about two plasma periods, and filled their 
accessible phase spaces in ~50 m.  Moreover, plots of 
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individual orbits appeared to reflect globally chaotic 
behaviour in keeping with the exponential dynamics.  The 
beam parameters for this experiment were a plasma period 
of 1.14 m and x and y betatron focusing periods without 
space charge of 1.63 m.  Inserting these numbers, along 
with =1 and 〈 〉=1, into Eq. (1) yields an estimated e-
folding (mixing) time ~2.0 m, in agreement with the 
simulation. 

This first study comprises a form of "symmetry 
breaking", wherein the broken symmetry is in momentum 
space rather than configuration space.  The beam thus 
begins in a nonequilibrium state, and it evolves toward a 
metaequilibrium in which the particle orbits have filled an 
invariant measure of phase space.  The transient dynamics 
reflect an intricate, evolving network of space-charge 
waves that set up a complicated potential in which a 
substantial population of particle orbits becomes globally 
chaotic.  By contrast, the symmetric, isotropic system 
establishes a potential that is strictly integrable, apart from 
granularity, in which the orbits are accordingly regular. 

3.2 Five Beamlets in Smooth Transport Channel 
A well-known experiment in accelerator physics is that 

of M. Reiser and collaborators [8] concerning the 
propagation of five beamlets in a periodic solenoidal 
transport channel.  The beam is nonrelativistic and subject 
to considerable space-charge forces. The relaxation time 
via two-body collisions in this beam corresponds to a 
propagation distance ~1 km.  Yet, regardless how well the 
beam was root-mean-square (rms) matched to the 
transport channel, the beamlets were seen to reappear only 
once, at a point ~1 m from the source.  Their failure to 
reappear again would seem to reflect a collisionless 
process that, in effect, causes the particle orbits to lose 
memory of their initial conditions.  Simulations with a 
particle-in-cell code well reproduced the measurements. 

To explore how chaotic mixing influences the dynamics 
of such a manifestly nonequilibrium beam, we simulated 
the experiment using WARP.  Our simulation differed 
from the experiment only in that we took the transport 
channel to impart a constant, linear external focusing 
force, whereas in the experiment the channel comprised a 
periodic solenoidal focusing lattice.  Nonetheless, our 
simulation results correlate well with the measurements. 

The strongly time-dependent space-charge potential 
drives a large population of globally chaotic orbits.  
Figure 2 on the next page illustrates how orbits of 
representative test particles evolve. The test particles 
interact with the potential but not with each other.  One 
sees that typical ensembles that are initially localized in 
phase space grow exponentially to fill much of their 
respective accessible regions of phase space.  Meanwhile 
the five beamlets lose their identity. 

In this experiment, though chaotic orbits are easily 
found, it is difficult to separate the macroscopic influence 
of chaotic mixing from that of linear phase mixing of the 
five beamlets.  Because the beamlets are large, they span a 
broad band of orbital frequencies in the initial potential.  
Accordingly, they smear through large regions of phase 

space and quickly overlap.  One can be sure, however, 
that chaotic mixing is active over the bulk of phase space. 

Analogous behaviour is seen in simulations of a rms-
mismatched five-beamlet system, except now there is an 
additional phenomenon, namely, the formation of a 
prominent halo.  Indications from the simulation are that 
the halo forms via parametric resonance with oscillations 
of the global potential as envisioned by Gluckstern [9].  
Yet microscopic processes can stochastically convert core 
orbits to halo orbits and vice versa, thereby providing a 
mechanism for the production of "new halo" [10]. 

3.3 Chaos in Time-Independent Potentials 
We now consider time-independent potentials in 

thermal equilibrium.  The corresponding density profiles 
are constant near the bunch centroid, and at larger radii 
they drop to a low-density tail.  In this “Debye region”, 
the net force on a particle is nonlinear, and one asks 
whether this force can support a substantial population of 
chaotic orbits.  All spherically symmetric systems are 
integrable and support only regular orbits.  In general, 
however, a system will be aspherical because the external 
focusing is generally anisotropic in a reference frame 
comoving with the beam.  

A methodology for exploring these systems 
computationally is to integrate orbits that start from a very 
close distance in phase space, i.e., by placing them with 
zero initial velocity at nearby points in configuration 
space.  Because the coarse-grained net force in these 
systems is conservative, the total particle energies E are 
conserved.  The integration proceeds for about one 
dynamical time, at which point the Lyapunov exponent is 
calculated from the particle separations.   The integration 
is then "renormalized" to bring the orbits close again, and 
the process is repeated until the Lyapunov exponents 
converge, which typically corresponds to a duration of 
~200 dynamical times. 

Upon expressing all lengths in units of the Debye length 
as measured at the bunch centroid, and all times as the 
product of po with the real time t, one obtains the 
dimensionless potential-density pair 

 
(x) = ( 2/2)[(b/a)2 x2 + y2 + (b/c)2 z2] + sc(x), (2) 

n(x) = exp[- (x)];    
 
wherein  and (a,b,c) denote the strength and scale 
lengths, respectively, of the external focusing field, and 

sc(x) is the space-charge potential. Fig. 3 pertains to a 
triaxial configuration corresponding to 2 = 1.0002/3; 
(a/b)2 = 4/5, (c/b)2 = 4/3.  The results reflect statistics 
from samplings of ~2000 particle orbits that were started 
at zero velocity at various points in configuration space 
(corresponding to various total particle energies E).  
Plotted in Fig. 3 is the largest Lyapunov exponent, i.e., the 
chaotic-mixing rate of these orbits, normalized to the 
dynamical frequency.  The theoretical result of Eq. (1) 
well matches the numerical result. Though this particular 
potential does admit chaotic orbits, they constitute only 
~5% of all the sampled orbits.  However, the fraction of 
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Figure 3.  Chaotic-mixing rate versus total particle energy 
E.  The inset shows the corresponding density profile 
along the y-axis with x = z = 0. 
 
chaotic orbits depends on the geometry.  We find over a 
substantial range of the parameter space it can be as high 

as a few tens of percent for orbits reaching to the Debye 
region.  This is a significant result, in that density 
perturbations arising from irregularities in the external 
force will first appear in the Debye region, and the 
sizeable percentage of chaotic orbits will work toward 
irreversibly mixing these perturbations away. 
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Generally clear exponential 
growth, indicating chaotic  

mixing is active. 

Figure 2: Evolution of five representative ensembles of test particles in the five-beamlet simulation.  Beam parameters 
are: 5 keV energy, 44 mA current, 4.6 mm radius, and 64.8 m full (90%) emittance.  The left panel shows snapshots at 
(top-to-bottom left column) 0 m, 0.98 m, 2.88 m and (top-to-bottom right column) 5.24 m, 11.52 m, 31.68 m.  The right 
panel shows the evolution of the natural logarithm of the x and y "emittance" moments of the ensembles.  
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