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Abstract 
A complete theoretical model has been developed 

within the context of RFQ tuning study. This model is 
based on an equivalent 4-wire line whose voltages obey a 
differential equation recast into an eigen-value problem. 
The segmentation and the non-homogeneity of the High 
Intensity Proton Injector (IPHI) RFQ are taken in account. 
Applying the spectral differential theory, the solutions of 
the eigen-value equation are the resonance modes. In this 
paper, the modes computed from our model are compared 
with experimental and 3D simulations results. The good 
agreement that we find validates our cut-off wave-guide 
equivalence approach. 

1   RFQ 4-WIRE LINE MODEL 
A new RFQ model [1] that we have developed is based 

on a 4-wire line supporting TEM modes that give a good 
image of the TE fields in the central region. Inverse 
inductances per unit length are added between each 
neighbouring lines in order to consider the longitudinal 
magnetic field Hz. 

This model leads to a second order differential equation 
in voltage UcUAzU 2222 ω−=−∂∂ , where the matrix A 
contains all the electrical parameters of the line, and 

[ ]TSQ UUUU ,,=  is the modal vector of the voltage, UQ 
being the quadrupolar component, US and UT the dipolar 
components. 
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Fig. 1 : Example of a segmented "0-0-1-0" mode 
The eigen-values of the equation are the frequencies of 

the resonance modes, the eigen-vectors correspond to the 
voltage profile between the electrodes. In a perfectly 
symmetrical RFQ, the Q, S and T eigen-spaces are 
decoupled and are described by 3 subsets of modal 
vectors vQi, vSj and vTk. 

The figure 1 gives an example of the quadrupole 
resonance mode "0-0-1-0" computed in the case of the 
ideal IPHI RFQ (3 segments). The numbers stand for the 
number of times the voltage crosses zero within the 

segment, the sign “–“ signifies that a phase jump occurs 
in the corresponding coupling cell. 

2   BEAD-PULL MEASUREMENTS 
ANALYSIS 
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FQ cold-model and the bead-pull test bench 
 measurements have been made in our RFQ 
 configured as two coupled 1-m long segments 
he test bench [2] generates 4 vectors of 
hase ϕ-ϕ0 (one per quadrant) as a function of 
inal position z, that can be written as : 






 ++ ⊥⊥

222
//

0
2 atEatHazH EfHfHfd

d ω
ω
ϕ  (1) 

cript ‘a’ stands for normalization as defined by 
i.e. for example, the transverse component of 

 field E is ∫Ω Ω= dEE attat
2E . 

rameters are the signed polarizabilities of the 
object with respect to its major (//) or minor 
ion axis. The equations of any TE mode [4] 
y the RFQ is given by : 

),( yxtψ∇ , ),()(1
0

yxdz
zdV

j
H tt ψ

ωµ
∇= ,

zyxzVkc ),()(2 ψ , where V(z) is the voltage 

(x,y) is the modal function particular to the 
 mode present in each segment. The equation 
the general form 22

0 )( dzdVBVA +=−ϕϕ , 
 (resp. <0) if the perturbing object is in a 
y (resp. electrically) dominant region, and B is 
. It follows that the wave-guide voltage is 
 to an arbitrary multiplicative constant, of : 

22
0 )()( dzdyay +=−± ϕϕ    (2) 
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2-2 1.12.10-3 0.94 – 1.30
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Fig. 3 : Line voltages of the quadrupole “2-2” mode 
(direct extraction as the square-root of ϕ-ϕ0) Fig. 5 : IPHI RFQ cold-model coupl
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This equation explains why the direct extraction of the 
voltage as the square root of ϕ-ϕ0 does not reach zero at 
the node positions of higher order modes (Fig. 3) . 

The simulation has generated the |Et|, 
(Fig. 6) as a function of z along the line on
(x = y = 55.15mm) followed by the perturbin
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Table 1: Differential equation parameter ameas. 
 
First, the so-called ‘Differential Equation Parameter’ 

a=B/A, is directly estimated from the measurements at 
each node location; average values and standard 
deviations are given at the Table 1. Fig. 6 : Field components computed by Sop

segment RFQ for the ‘2-2’ quadrupole
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Fig. 7 : Perturbing object (red) 
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The polarizability factors can be analytica

for these 2 last geometries as : 
Fig. 4 : Line voltages of the quadrupole “2-2” mode   Ellipsoid ([5]) Cylind

fE⊥ 1,2975.10-6 1,852
fH// 0,6288.10-6 0,926
fH⊥ 0,9137.10-6 1,315

Once 'a' has been extracted, equation (2) is solved 
independently for each measured quadrant/segment of the 
RFQ, and  ‘y’ is plotted vs. z (Fig. 4). 

We can compute the differential equati
from the simulated fields components 
parameters as : 

3   3D SIMULATIONS ANALYSIS 
The 2-m long segmented RFQ has been meshed with 

IDEAS and the resonance modes have been found with 
the ‘Soprano’ RF modulus of Vector Fields (Fig. 5). 
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ω = resonance frequency, η = vacuum imp
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i mode fQmeas 

fQSoprano 

simulations 
fQ4-wire line 

model 
1 0-0 340,50 339,47 340,56 
2 0+0 350,85 348,43 350,84 
3 1-1 369,53 368,01 370,59 
4 1+1 380,28 378,89 380,37 
5 2-2 445,17 443,56 449,45 
6 2+2 458,64 456,59 457,66 
7 3-3 550,16 548,11 556,71 
8 3+3 566,68 564,10 563,37 

 
 a meas +σ

a meas -σ
 
 
 
 
 
 
Table 2: Quadrupole resonance frequencies comparison 

Fig. 8 : Differential Equation Parameter comparison 
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ath as a function of z in the first section has been plotted.  
For the set of measured segmented modes (Table 1), ath is 
perfectly bounded by ameas.± σ for either bead  
geometries,  ellipsoid or cylinder (Fig. 8). Note that a 
perfectly sinusoidal voltage function would yield a 
constant ath , and discrepancies observed in the end 
regions of the segment are mainly due to mesh 
inaccuracies. 

4  COMPARISONS WITH OUR MODEL 
At this point we can compare : (i) resonance 

frequencies fQ and ‘y(z)’ functions extracted from 
measurements, (ii)  fQ, Et and/or Hz computed by the 3D 
simulation code, (iii) eigen-values fQi and eigen-vectors 
vQi numerically computed from the RFQ 4-wire line 
model (where the coupling capacitance has been set to 
1,85 pF). 

Fig. 10 : Frequency difference between measurements, 
simulations (Soprano) and our model. 

5    CONCLUSION 
The close agreement between measurements, 3D and 

4-wire line simulations supports the analogy between 
RFQ's and TE-mode wave-guides, either for the 
accelerating mode or the other higher order modes: (i)  
voltage and voltage derivative profiles of a segmented 
RFQ are precisely reproduced,  (ii) eigen-frequencies are 
predicted with an accuracy compatible with tuning 
requirements, (iii) effects of a perturbing bead are 
quantitatively predicted. 
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Fig. 9 : Eigen-vector of the quadrupole ‘2-2’ mode 
 
Sorted in ascending frequency order, these three sets of 
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