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Abstract 

 Sausage and hollowing instabilities in high-intensity 
particle beams are investigated by making use of the 
Vlasov-Maxwell equations in the smooth-focusing 
approximation. The dispersion relations of the 
axisymmetric sausage and hollowing modes, 
characterized by radial mode numbers n = 1 and n = 2, 
respectively, are obtained for the complex eigenfrequency 
in terms of the axial wavenumber k and other system 
parameters. Detailed stability properties are calculated 
over a wide range of normalized beam intensity sb and 
fractional charge neutralization f. The growth rates of the 
sausage and hollowing modes are found to be of the same 
order of magnitude as that of the dipole-mode two-stream 
instability.  

1 INTRODUCTION 
Intense charged particle beams can develop a halo 

structure during propagation. This halo structure may be 
caused by collective excitations, such as axisymmetric 
hollowing instabilities. Background electrons are often 
present at the high beam currents and charge densities of 
practical interest in many ion beam applications. It has 
been recognized[1-6] for many years that the relative 
streaming motion of the high-intensity beam particles 
through a background charge species can provide the free 
energy to drive the classical two-stream instability. In the 
present analysis, we investigate two-stream instability 
properties for axisymmetric perturbations (∂/∂θ= 0) about 
an intense ion beam propagating through background 
electrons by making use of the Vlasov-Maxwell 
equations. Therefore, the present work is complementary 
to a previous study[6] of the two-stream instability carried 
out for non-axisymmetric perturbations (∂/∂θ ≠ 0). 

2 THEORETICAL MODEL 
The equilibrium configuration consists of an intense 

ion beam with radius rb that propagates in the z-direction 
with directed kinetic energy (γb-1)mbc2 through a perfectly 
conducting cylinder with wall radius rw.  The ion beam 
propagates through background (stationary) electrons 
with characteristic directed axial momentum γbmbβbc in 
the z-direction, where Vb = βbc = const. is the average 
axial velocity, and γb= (1- βb

2)-1/2 is the relativistic mass  
factor. In order to simplify the analysis, it is assumed that 

 
the background column of electrons has radius rb. In the 
context of the smooth-focusing approximation, the beam 
ions are radially confined by the applied transverse 
focusing force Ffoc

b. As for the background electrons, to 
the extent that the beam ion density exceeds the 
background electron density, the space-charge force on an 
electron provides transverse confinement of the 
background electrons by the electrostatic space-charge 
potential φ(x,t).  

For present purposes, the equilibrium distribution 
functions for the beam ions and the background electrons 
are taken to be[6] 
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Here, nb and ne are the on-axis ion and electron number 
densities, respectively, T⊥b and T⊥e are positive constants, 
and H⊥b and H⊥e are the single-particle Hamiltonians for 
the transverse ion and electron motions. 

We now make use of the linearized Vlasov-Maxwell 
equations[6] to develop a theoretical model of the two-
stream instability for perturbations about the equilibrium 
described by Eq. (1). In the subsequent analysis, we adopt 
a normal mode approach in which all perturbed quantities 
are assumed to vary with θ, z, and t according to 

)] , t  -[i(kz  (r) = t)  z, , (r, ωξθδξ exp1               (2) 
for axisymmetric perturbations with ∂/∂θ = 0. Here, ω and 
k are the complex eigenfrequency and axial wavenumber 
of the perturbation, with Imω > 0 corresponding to 
temporal growth. We also consider axial wavelengths that 
are long and frequencies that are low compared with 
quantities that characterize the beam radius. The 
perturbed potential amplitudes, ψ1(r) and φ1(r), for the 
beam ions and background electrons occurring in the 
linearized Vlasov equations are determined self-
consistently in terms of the perturbed particle number 
densities. We obtain 
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where ψ1(r) = φ1(r) - βbAz1(r), and nb1(r) and ne1(r) are the 
perturbed number densities of the beam ions and 
background electrons, respectively. The perturbed 
densities can be obtained from the linearized Vlasov 
equations for δFb and δFe. For example, the perturbed ion 
beam density nb1(r) is calculated from 

. F p d = (r)n b
3

b1 δ∫                            (4) 
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In Eq. (4), δFb is the perturbed ion beam distribution 
function calculated by the method of the characteristics 
which can be expressed as[6] 
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where long wavelength and low frequency perturbations 
are assumed. Here, x′(t′) and p′(t′) are the particle 
trajectories in the equilibrium field configuration that pass 
through the phase space point (x, p) at time t′ = t.   

The self-consistent eigenfunctions ψb(r) and ψe(r) for 
radial mode number n are given by[7] 
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where rw is the radius of the conducting cylinder, and ajα 
are expansion coefficients.   

We outline the solution to the coupled eigenvalue 
equations in Eq. (3) for the case of axisymmetric modes 
with radial mode numbers n = 1 and n = 2, which have the 
functional form in Eqs. (6a) and (6b). We first substitute 
Eqs. (6a) and (6b) into Eq. (5), and evaluate the perturbed 
distribution function for the ion beam and the perturbed 
ion beam density in Eq. (4). Similarly, we can also 
calculate the perturbed distribution function and density 
of the electrons, thereby obtaining a closed form for the 
coupled eigenvalue equations in Eq. (3). Next we solve 
these coupled eigenvalue equations, applying the 
appropriate boundary conditions at r = rb, which are 
determined by multiplying Eq. (3) by r and integrating 
over the interval rb - ε < r < rb + ε, with ε → 0+. The 
result is a matrix dispersion equation, which provides the 
dispersion relation for axisymmetric perturbations for 
different radial mode numbers. 
 

3 SAUSAGE MODE 
Axisymmetric perturbations with radial mode number n 

= 1are characterized by the so-called sausage instability. 
Carrying out some straightforward algebraic 
manipulation, the dispersion relation for the n = 1 mode 
can be expressed as 
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where ωb = [4ωβb
2 - ωpb

2(1/γb
2 -2f)]1/2, and ωe = [(2-

f)ηωpb
2]1/2 and the coupling term on the right-hand side of 

Eq. (7) is defined by ωf
4 = ηfωpb

4. Here ωβb = const. is the 
effective betatron frequency for transverse ion motion in 
the applied focusing field, ωpb = (4πnbeb

2/γbmb)1/2 is the 
on-axis relativistic beam plasma frequency, the parameter 
η = γbmb/Zbme is the mass ratio and eb = Zbe.    

In the absence of background electrons (f = 0), the 
dispersion relation in Eq. (8) gives purely oscillatory 
beam-mode sideband oscillations with frequency ω - kβbc 

= ± ωb. For f ≠ 0, however, it follows that ωf ≠0, and the 
right-hand side of Eq. (7) causes an unstable coupling of 
the electron oscillations, ω = ± ωe, and the ion 
oscillations, ω - kβbc = ± ωb, at least for a certain range of 
the axial wavenumber k.  Specifically, for the positive-
frequency electron branch in Eq. (7) with ω ≈+ ωe, it can 
be shown that the dispersion relation in Eq. (7) supports 
one unstable solution with Imω > 0 for oscillation 
frequency and wavenumber (ω, k) in the vicinity of (ω0, 
k0) defined by ω0 = ωe and k0βbc = ωe + ωb.  

Note that the parameter η occurring in Eq. (7) is much 
larger than unity for protons and more massive ions. In 
parameter regimes of practical interest, ωe in Eq. (7) is 
much larger than ωb and ωf , and therefore |δω|= |ω-ω0|<< 
2ωe. If further, |δω|, |βbcδk| << 2ωb, then Eq. (7) can be 
approximated by the simple quadratic form 
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which has a maximum growth rate (Imω)max = Γ0 when δk 
= k - k0 = 0.  

The quadratic approximation to the dispersion relation 
given in Eq. (8) is valid for moderate beam intensities 
satisfying sb = ωpb

2/2γb
2ωβb

2 ≤ 0.2. For heavy ion fusion 
applications, however, the beam emittance is very low and 
the normalized beam intensity is such that sb can approach 
unity in the absence of background electrons (f = 0). At 
such high beam intensities, it is necessary to solve the full 
quartic dispersion relation (7) for the complex oscillation 
frequency ω. The dispersion relation in Eq. (7) has been 
solved for singly-charged cesium ions with mass number 
A = mb/mp = 137 and for (γb - 1)mbc2 = 2.5 GeV, f = 0.1. 
Typical results obtained from Eq. (7) are illustrated in 
Fig. 1, where the normalized growth rate ui = (Imω)/ωβb is 
plotted versus the shifted axial wavenumber ζ = (k � 
k0)βbc/ωβb. At very high beam intensity with sb → 1, say, 
it is evident from Fig. 1 that the normalized growth rate ui 
= (Imω)/ωβb has a large bandwidth and becomes 
significantly skewed about k = k0.  
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Figure 1: Normalized growth rate ui versus the shifted 
axial wavenumber ζ. 

It is also striking from Fig. 1 that the instability growth 
rate can be large (ui ≈ 3) for the very high beam 
intensities (sb → 1) of interest for heavy ion fusion. The 
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normalized real frequency Reω can also be obtained 
numerically from Eq. (7). Profiles of the normalized real 
frequency for the sausage instability are qualitatively 
similar to those of the dipole mode[6]. 

4 HOLLOWING MODE 
Axisymmetric perturbations with radial mode number n 

= 2 are characterized by the so-called hollowing 
instability. The dispersion relation for the n = 2 mode is 
obtained from the matrix dispersion equation.  Carrying 
out some straightforward algebraic manipulation, the 
dispersion relation for the n = 2 mode is given by 
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where the Doppler-shifted frequency Ωb is defined by Ωb 
= ω - kβbc, and the (depressed) betatron frequencies,vb 
and ve, are defined by νb

2 = ωβb
2 � (ωpb

2/2)[(1/γb
2)-f] and 

νe
2 = (ωpb

2/2)η(1-f).  
For high intensity beams with sb = ωpb

2/2γb
2ωβb

2 
approaching unity, it is necessary to solve the full 
dispersion relation in Eq. (9) for the complex oscillation 
frequency ω. Typical numerical results obtained from Eq. 
(9) are similar qualitatively to those for the dipole and 
sausage modes. We also find from analysis of Eq. (9) that 
the growth rate of the hollowing instability (n = 2) is 
comparable in magnitude to that of the sausage instability 
(n = 1) in Fig. 1.  In this context, we conclude that the 
axisymmetric hollowing instability may also be 
deleterious to intense ion beam propagation through a 
background population of electrons. 

5 CONCLUSIONS 
Stability properties of the sausage mode characterized  

by radial mode number n = 1 have been investigated. The 
dispersion relation for the sausage mode was expressed in 
quadratic form, similar to the dispersion relation for the 
hose instability (dipole-mode)[6]. The eigenfunction 
obtained self-consistently for the sausage mode indicates 
that the perturbations exist only inside the beam[7]. 
Therefore, the presence of the grounded conducting wall 
does not affect the stability behavior. Stability properties 
of the hollowing instability, characterized by radial mode 
number n = 2, were also investigated. The full dispersion 
relation for the hollowing mode was obtained, which 
predicts instability in several ranges of axial wavenumber 
k. The growth rates of the sausage and hollowing 
instabilities are of the same order of magnitude as that of 
the dipole-mode hose instability[6]. In this regard, we 
emphasize that the axisymmetric sausage and hollowing 
instabilities may also be deleterious to intense ion beam 
propagation through background electrons. 
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