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OF THE PROTON BEAM FROM LEDA

J. Gao, Laboratoire de L' A&erateur Lirgaire, B.P. 34, 91898 Orsay cedex, France

Abstract make a brief review of our theoretical bases, and in sec-

. . . tion 3 we calculate analytically the beam transverse charge
From the experimental facility dedicated to beam'hal%rofile and compare wit% that);rom experiment 9

formation study at Los Alamos [1] many interesting exper-
imental results have been obtained. The measured beam

transverse charge profiles with significant halo particles 2 REVIEW OF THEORY

due to beam envelope oscillation through the FODO chan- For g continuous round beam, its envelope can be de-

nel, however, have not been understood yet by applyingribed by the envelope equation:
only particle-core model [1][2][3]. In this paper we try to

reconstruct this experimentally obtained transverse charge d2_R K2R - K i —0 1)
profiles by applying another halo formation theory [4]. dz? 0 R R3

whereR is the beam envelopds = 2(1,/1y)/(37)3, e

1 INTRODUCTION is the beam unnormalized transverse emittancand /3

. . re the normaliz rticle’s ener nd veloci re-
To study beam-halo formation experimentally, a 52aet e normalized particle’s energy and velocityd, re

spectively, I, is the beam current, anky = 4megmoc®/q
quadrupole FODO. beam transport Chaf‘”e' was set up |tth mgo/q being the mass charge ratio of the particle
Los Alamos by using proton beam coming from the Low,

. (Io = 1.7 x 10* A for electron). When emittance is zero,
I\E/lne\z/rgy Dtemtl))nstrat_lon Acclelertat((j)rb(LEDgfgo[ll\]/l.HThe 6'7one find the matched beam envelde = v K /Ky. Ac-
€V proton beam 1S accelerated by a z cw ra(’:ording to ref. [4], the first order equilibrium transverse

dio frequency quadrupole (RFQ) with a 75 KeV proton In'Charge distribution for fermion follows Fermi-Dirac statis-

ector. Th? detailed dgscrlptlons of the RFQ and LEDAﬁcs, and the distribution function can be expressed as:
halo experiments are given in refs. [5]-[12]. Among oth-

ers, the experimental measurements reveal a typical beam B F 5
transverse charge profile with apparent halo particles due n(z) = RZ (1 + exp ((z2 — R2)/\2)) @

to beam envelope oscillation as shown in Fig. 1. ltis
whereF is a normalization factor:

Mismatched beam (mu=1.5)-75 mA-scanner 51y R / A 2
Combined Y Distribution F= (Fo/Ap) ()

o
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) ! 14exp(=(Ro/Ap)?)
- % | n ( exp(~(Ro/Ap)?) )
e
£ # 1 ] with the normalization condition of* Iyn(z)dz? = I.
";!C 10—t N 4'.1 J In eq. 2Ry corresponds to the maximum particle excur-
& T+ | sion from the beam axis when the Debye lengh = 0.
& 107t P+ T | With finite beam envelope modulation amplitude? and
3 * * ] finite transverse beam emittangethe general expression
s 108 . . . . . for Debye length is expressed as:
15 -10 iuafﬁog (mm)s 1 15 /\2D _ (6R? + ARQ)K}Q% @
Kip+ K2
Figure 1: Joined profiles with wire and scraper scanners ,
showing a dynamic range from core to maximum extent ofith 0R = 5zops, Kr = V2Ky, Kap =
nearly six orders of magnitude (the figure and the captiog/m, K. = ¢/R% ()R << Ry), andAR and
are from ref. [6]. SR are statistically independent.

Under the influence of the periodic envelope oscillation,
seen from Fig. 1 that the profile has three distinct regions: js found that the particles transversely located:at
the “head”, the “shoulder”, and the “feet”. As stated in ther, + Az,,,.. will execute stochastic motions, ardr
summary of ref. [1], this profile shape is not understood. 18an be calculated analytically as follows [4]:
this paper we try to apply the halo formation theory estab-
lished in ref. [4] to explain and reconstruct it with the cor- Amar(z) 2R3/ B(2)
responding experimental parameters. In section 2 we first Ry o V2TLK ARy [(2)3/2

max

®)
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where((z) is the beta function of the focusing channel ofemittance. From eq. 10 we can calculate the total current,
the zero space charge effect, ahis the envelope oscilla- ;2 beyond the the virtue boundary:
tion period. If one takeg(z) = ((z;) = Bav, €q. 5 can be

further simplified as: Lo — Inn /: B (2)da? ~ 4 ( SR )2 .
T=Tmas—0R Tmax
JAV - _ 2R} (6) (11)
Ry V2TLEK ARy fBa0 The particles beyond the virtue boundary will follow a sim-

ilar distribution to that expressed in eqg. 10 in the region
wheref,, = Ro/vK. The current corresponding to the .. < z < R,),.
particles executing stochastic motions can be easily esti-

. 2 2
mated: h2(3}) _ s _2x2 <1 _ ;2 _‘Zgaw > (12)
I _ E =00 1 de m max m max
"7 R] 2=Ro+Amas 1 + exp (”2—2’%3) Now we will explain briefly the stationary distribution
Ab functions, h, h1, andh2. Since they are due to diffusion
) 9 2\ 12 processes (the physical description can be consulted in ref.
— ]bp)‘_Dm exp ((2? — RY)/\p) =% [13]), they can be obtained from diffusion equations [14].
Ry \ 1+exp((z2 = R3)/A,) ) *=10F2%mes 1hegs. 9, 10, and 12, we have used a simpler function, such

) ) ) (7) asf(z) = (1 - %) , to replace zero order Bessel function,
Due to the stochastic motion the particles located at

Ry + Ax,q, Will suffer from diffusion process towards 0.
outside and follow different distribution function from that _ D€fining 15’;33”‘3 angular  frequencyw, =

expressed in eq. 2. Before giving the new charge distrk?2d"/€omoy) /> (where n is the charge density) and
bution function we remind the reader an important findin@'@Sma wave numbel, = w,/fc, one gets the plasma

from numerical simulations. It is foundumerically that wavelength\, = 27’7% If the particle re-distribution

there exists a maximum halo amplitude which can be e¥istance, or the so-called relaxation distangg/'4 [3],

Jo (%um), Whereum = 2.405.

pressecmpirically as [2][3]: is shorter than the envelope oscillation periafl, the
lost beam current due to envelope oscillation during one
Zmaz = (A + Blln(p))) (8)  oscillation period can be estimated as:

wherea is the matched core rms sizd,and B are week z=R,, AR\ 2
weak functions of the tune-depression ratio, approximately I;,ss = Ihz/ h2(x)dz? ~ 4 <> Ipo
given by A = B = 4, andy is the initial mismatch pa- w=Rm—ARo R (13)
rameter defined a@“:_ R"”f,““l/ Ry. In this paper we W'“. The beam current loss rat®,,.s (A/m), can be obtained
definex,,., as the “virtue” boundary, and the beam PiPg o g /L

dimension,R,,, as “hard” boundary. We distinguish now > 'Vtess = floss/ L

two possible cases. Firstly, whe®,, < x,,4., the par-
ticles in the regionRy + Az, < = < R,, follow the 3 ANALYSISON LEDA BEAM HALO

charge distribution function expressed as: EXPERIMENTS
h(z) = 2 o In this section we apply our theoretical model to a set
= RZ, — (Ro + AZmaz)? of parameters similar to those in the experiments at Los

Alamos and compare our analytical result with that ob-
served experimentally. Before going on it is necessary to
©) make two assumptions. Firstly, the our round beam model
is applicable to a beam transported in a FODO channel,
wherejﬁf:gimmw In1h(x)dz? = Ipy . Secondly, when and secondly, the continuous beam model is applicable to
R,, > zmq One has to find first the charge distributiona long bunched beam and the beam curignn the ana-
within Ry + Az e < © < Zmae. Similar to eq. 9 one lytical formulae should be replaced by the bunch current.

1 22 — (Ro + AZpnaz)?
R72n - (RO + Ammaw)Q

has: Now, we take a proton beam of 6.7 MeV with bunch cur-
hl(z) = 2 ~ rentl, = 0.42 A and average beam current 75 mA. The rms

T30n — (Ro + ATpaz)? beam size from the RFQ is assumed tarhe= 0.0013 m.

22 — (Ro + Armas)? To apply our theoretical model we cho&g = 0.0013 m,

< By Axm;x)2> (10) AR =Ry/2,p=15,L =11m,e, =2 mmmrad, and

the FODO channel beam pipe inner radigyg = 0.01393
Now we estimate the particle populations beyond the virtuen. In this specific case one h&s, larger thanz,,,,,.. Be-
boundary due to finite beam emittance. The quardifly fore going on, we should stress stronly that the beam pa-
is the uncertain measure for the beam envelope with fintameters correspond to those at the beginning of the FODO
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channel, instead of at the end of FODO channel. By apply4] J. Gao, “Analytical estimation of halo current loss rates in
ing egs. 2, 10, and 12, one obtains theoretically the equi- space charge dominated beamistcl. Instr. and Methods,
librium normalized transverse charge profile as shown in A484(2002), p. 27.

Fig. 2 with Az;,4, = 0.3 mm andz,,., = 7.3 mm. The [5] D. Schrage, et al., “CW RFQ fabrication and engineering”,
average halo current loss rate at the beam pipe over beam Proceedings of Linac’98, Chicago, USA, p. 679 (1998).

pulse iSRoss,av = lioss f/L = 1.6 NA/m, wheref isthe (] pL. Colestock, et al., “Measurements of halo generation for a
ratio of the average beam current with respect to the peak proton beam in a FODO channel”, Proceedings of PAC2001,
bunch current. Comparing Fig. 1 with Fig. 2, it is obvious  Chicago, USA, 2001, p. 170.

that the theoretical model reconstruct rather well the expef
imentally observed transverse charge profile at the end of] of Linac2000, California, USA, 2000, p. 341.

FODO channel, [8] W.P.Lysenko, etal., “Characterizing proton beam of 6.7 MeV

LEDA proton beam halo formation LEDA RFQ by fitting wire-scanner profiles to 3-D nonlinear
simulations”, Proceedings of PAC2001, Chicago, USA, 2001,
p. 3051.

107" Ve ™~ 1 [9] M.E. Schulze, et al., “Characterization of the proton beam
. ;/ \ ] from the 6.7 MeV LEDA RFQ”, Proceedings of PAC2001,
\ | Chicago, USA, 2001, p. 591

[10] J.H. Kamperschroer, et al., “Analysis of data from the
- L L E LEDA wire scanner/halo scraper”, Proceedings of PAC2001,
st ] Chicago, USA, 2001, p. 1306.

P/ \ ] [11] C.K. Allen and T. Wangler, “Parameters for gquantifying
beam halo”, Proceedings of PAC2001, Chicago, USA, 2001,
107 5 p. 1732.

T. Wangler, “Beam halo in proton linac beams”, Proceedings

Normalized charge distribution
=
o

: : : : : [12] J.D. Gilpatric, “Experience with the low energy demon-

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 . . .
Transverse position (m) stration accelerator (LEDA) halo experiment beam instru-
mentation”, Proceedings of PAC2001, Chicago, USA, 2001,

Figure 2: The theoretical transverse charge profile with p-2311.
beam envelope modulation = 1.5, W = 6.7 MeV, [13] H.A. Kramers, “Brownian motion in a field of force and the

Ry = 0.0013 m, ARy, = 0.00065 m, R,, = 0.01393 m diffusion model of chemical reactionsPhysica, VII, no. 4

L =11m,1I, = 0.41 A (proton), f = 0.18, ande = 2 (1940), p. 284.

mm-mrad. [14] D.A. Edwards and M.J. Syphers, “An introduction to the
physics of high energy accelerators”, John Wiegons, Inc.
(1993) p. 238.

4 CONCLUSION

In this paper we have applied the halo formation the-
ory developed in ref. [4] to explain the experimentally ob-
served transverse charge profile obtained at Los Alamos.
The agreement between the experimental and analytical re-
sults is rather satisfactory.
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