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Abstract

From the experimental facility dedicated to beam-halo
formation study at Los Alamos [1] many interesting exper-
imental results have been obtained. The measured beam
transverse charge profiles with significant halo particles
due to beam envelope oscillation through the FODO chan-
nel, however, have not been understood yet by applying
only particle-core model [1][2][3]. In this paper we try to
reconstruct this experimentally obtained transverse charge
profiles by applying another halo formation theory [4].

1 INTRODUCTION

To study beam-halo formation experimentally, a 52-
quadrupole FODO beam transport channel was set up at
Los Alamos by using proton beam coming from the Low
Energy Demonstration Accelerator (LEDA) [1]. The 6.7
MeV proton beam is accelerated by a 350 MHz cw ra-
dio frequency quadrupole (RFQ) with a 75 KeV proton in-
jector. The detailed descriptions of the RFQ and LEDA
halo experiments are given in refs. [5]-[12]. Among oth-
ers, the experimental measurements reveal a typical beam
transverse charge profile with apparent halo particles due
to beam envelope oscillation as shown in Fig. 1. It is

Figure 1: Joined profiles with wire and scraper scanners
showing a dynamic range from core to maximum extent of
nearly six orders of magnitude (the figure and the caption
are from ref. [6].

seen from Fig. 1 that the profile has three distinct regions:
the “head”, the “shoulder”, and the “feet”. As stated in the
summary of ref. [1], this profile shape is not understood. In
this paper we try to apply the halo formation theory estab-
lished in ref. [4] to explain and reconstruct it with the cor-
responding experimental parameters. In section 2 we first

make a brief review of our theoretical bases, and in sec-
tion 3 we calculate analytically the beam transverse charge
profile and compare with that from experiment.

2 REVIEW OF THEORY

For a continuous round beam, its envelope can be de-
scribed by the envelope equation:

d2R

dz2
+ K2

0R − K

R
− ε2

R3
= 0 (1)

whereR is the beam envelope,K = 2(Ib/I0)/(βγ)3, πε
is the beam unnormalized transverse emittance,γ and β
are the normalized particle’s energy and velocity (v/c), re-
spectively,Ib is the beam current, andI0 = 4πε0m0c

3/q
with m0/q being the mass charge ratio of the particle
(I0 = 1.7 × 104 A for electron). When emittance is zero,
one find the matched beam envelopeR0 =

√
K/K0. Ac-

cording to ref. [4], the first order equilibrium transverse
charge distribution for fermion follows Fermi-Dirac statis-
tics, and the distribution function can be expressed as:

n(x) =
F

R2
0 (1 + exp ((x2 − R2

0)/λ2
D))

(2)

whereF is a normalization factor:

F =
(R0/λD)2

ln
(

1+exp(−(R0/λD)2)
exp(−(R0/λD)2)

) (3)

with the normalization condition of
∫ ∞
0

Ibn(x)dx2 = Ib.
In eq. 2R0 corresponds to the maximum particle excur-
sion from the beam axis when the Debye lengthλD = 0.
With finite beam envelope modulation amplitude∆R and
finite transverse beam emittanceε, the general expression
for Debye length is expressed as:

λ2
D =

(δR2 + ∆R2)K2
R

K2
∆R + K2

ε

(4)

with δR = ε2

2K2
0R3

0
, KR =

√
2K0, K∆R =√

2K2
0∆R/R0, Kε = ε/R2

0 (δR << R0), and∆R and
δR are statistically independent.

Under the influence of the periodic envelope oscillation,
it is found that the particles transversely located atx ≥
R0 + ∆xmax will execute stochastic motions, and∆xmax

can be calculated analytically as follows [4]:

∆xmax(z)
R0

=
2R3

0

√
β(z)√

27LK∆R0β(zi)3/2
(5)
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whereβ(z) is the beta function of the focusing channel of
the zero space charge effect, andL is the envelope oscilla-
tion period. If one takesβ(z) = β(zi) = βav, eq. 5 can be
further simplified as:

∆xmax

R0
=

2R3
0√

27LK∆R0βav

(6)

whereβav = R0/
√

K. The current corresponding to the
particles executing stochastic motions can be easily esti-
mated:

Ih1 =
IbF

R2
0
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(7)
Due to the stochastic motion the particles located atx ≥

R0 + ∆xmax will suffer from diffusion process towards
outside and follow different distribution function from that
expressed in eq. 2. Before giving the new charge distri-
bution function we remind the reader an important finding
from numerical simulations. It is foundnumerically that
there exists a maximum halo amplitude which can be ex-
pressedempirically as [2][3]:

xmax = a(A + B|ln(µ)|) (8)

wherea is the matched core rms size,A andB are week
weak functions of the tune-depression ratio, approximately
given byA = B = 4, andµ is the initial mismatch pa-
rameter defined asµ = Rinitial/R0. In this paper we will
definexmax as the “virtue” boundary, and the beam pipe
dimension,Rm, as “hard” boundary. We distinguish now
two possible cases. Firstly, whenRm ≤ xmax, the par-
ticles in the regionR0 + ∆xmax ≤ x ≤ Rm follow the
charge distribution function expressed as:

h(x) =
2

R2
m − (R0 + ∆xmax)2

×

(
1 − x2 − (R0 + ∆xmax)2

R2
m − (R0 + ∆xmax)2

)
(9)

where
∫ x=Rm

x=R0+∆xmax
Ih1h(x)dx2 = Ih1 . Secondly, when

Rm > xmax one has to find first the charge distribution
within R0 + ∆xmax ≤ x ≤ xmax. Similar to eq. 9 one
has:

h1(x) =
2

x2
max − (R0 + ∆xmax)2

×
(

1 − x2 − (R0 + ∆xmax)2

x2
max − (R0 + ∆xmax)2

)
(10)

Now we estimate the particle populations beyond the virtue
boundary due to finite beam emittance. The quantityδR
is the uncertain measure for the beam envelope with finte

emittance. From eq. 10 we can calculate the total current,
Ih2 beyond the the virtue boundary:

Ih2 = Ih1

∫ x=xmax

x=xmax−δR

h1(x)dx2 ≈ 4
(

δR

xmax

)2

Ih1

(11)
The particles beyond the virtue boundary will follow a sim-
ilar distribution to that expressed in eq. 10 in the region
xmax ≤ x ≤ Rm.

h2(x) =
2

R2
m − x2

max

(
1 − x2 − x2

max

R2
m − x2

max

)
(12)

Now we will explain briefly the stationary distribution
functions,h, h1, andh2. Since they are due to diffusion
processes (the physical description can be consulted in ref.
[13]), they can be obtained from diffusion equations [14].
In eqs. 9, 10, and 12, we have used a simpler function, such

asf(x) =
(
1 − x2

R

)
, to replace zero order Bessel function,

J0

(
x
Ru01

)
, whereu01 = 2.405.

Defining plasma angular frequencyωp =
(nq2/ε0m0γ)1/2 (where n is the charge density) and
plasma wave numberkp = ωp/βc, one gets the plasma

wavelengthλp =
√

2π
K

R0
γ . If the particle re-distribution

distance, or the so-called relaxation distanceλp/4 [3],
is shorter than the envelope oscillation period,L, the
lost beam current due to envelope oscillation during one
oscillation period can be estimated as:

Iloss = Ih2

∫ x=Rm

x=Rm−∆R0

h2(x)dx2 ≈ 4
(

∆R

Rm

)2

Ih2

(13)
The beam current loss rate,Rloss (A/m), can be obtained
by Rloss = Iloss/L.

3 ANALYSIS ON LEDA BEAM HALO
EXPERIMENTS

In this section we apply our theoretical model to a set
of parameters similar to those in the experiments at Los
Alamos and compare our analytical result with that ob-
served experimentally. Before going on it is necessary to
make two assumptions. Firstly, the our round beam model
is applicable to a beam transported in a FODO channel,
and secondly, the continuous beam model is applicable to
a long bunched beam and the beam currentIb in the ana-
lytical formulae should be replaced by the bunch current.
Now, we take a proton beam of 6.7 MeV with bunch cur-
rentIb = 0.42 A and average beam current 75 mA. The rms
beam size from the RFQ is assumed to beσx = 0.0013 m.
To apply our theoretical model we choseR0 = 0.0013 m,
∆R = R0/2, µ = 1.5, L = 1.1 m, εx = 2 mm·mrad, and
the FODO channel beam pipe inner radiusRm = 0.01393
m. In this specific case one hasRm larger thanxmax. Be-
fore going on, we should stress stronly that the beam pa-
rameters correspond to those at the beginning of the FODO
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channel, instead of at the end of FODO channel. By apply-
ing eqs. 2, 10, and 12, one obtains theoretically the equi-
librium normalized transverse charge profile as shown in
Fig. 2 with∆xmax = 0.3 mm andxmax = 7.3 mm. The
average halo current loss rate at the beam pipe over beam
pulse isRloss,av = Ilossf/L = 1.6 nA/m, wheref is the
ratio of the average beam current with respect to the peak
bunch current. Comparing Fig. 1 with Fig. 2, it is obvious
that the theoretical model reconstruct rather well the exper-
imentally observed transverse charge profile at the end of
FODO channel.
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Figure 2: The theoretical transverse charge profile with
beam envelope modulationµ = 1.5, W = 6.7 MeV,
R0 = 0.0013 m, ∆R0 = 0.00065 m, Rm = 0.01393 m,
L = 1.1 m, Ib = 0.41 A (proton),f = 0.18, andε = 2
mm·mrad.

4 CONCLUSION

In this paper we have applied the halo formation the-
ory developed in ref. [4] to explain the experimentally ob-
served transverse charge profile obtained at Los Alamos.
The agreement between the experimental and analytical re-
sults is rather satisfactory.
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