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Abstract

The variational method for numerical simulation of rf pa-
rameters of periodical structures with arbitrary phase shift
per structure period is developed. At any phase shift the
field distribution is represented as a sum over trial func-
tions. As trial functions we use numerically simulated
field distribution, considering with different boundary con-
ditions only one structure period. By using standard varia-
tional technique and Floquet boundary conditions, the gen-
eralized symmetrical eigen-value problem is formed. Due
to successful choice of trial functions, which keep a lot of
information about the real structure shape, the method has
fast convergence. Not so many trial functions are needed to
describe good the field distribution. The method combines
the powerful ideas of variational approach with possibili-
ties of modern computer codes for direct simulations. A lot
of applications, both for structure parameters calculations
and for general properties investigation, are possible.

1 INTRODUCTION

Now we have a powerful codes, like MAFIA, for numer-
ical simulations of the field distributions in electromag-
netic systems with possibilities of simulations in periodi-
cal structures of arbitrary shape by using Floquet boundary
conditions. But a code output, as a role, is a number in a
mesh point. It has a practical value, but, even with power-
ful interface, sometimes it is difficult to generalize results.
Moreover, the direct numerical simulations for periodical
structures is still consuming in computer resources.
Fifty years ago a variety of another methods were in use
(see, for example, [1]). One of them, very general, with a
well developed theory [2], is the variational technique. It
allows to treat results in terms of interacting trial functions.
The main disadvantage of the variational method were in
poor choice of a basis of trial functions, which have to sat-
isfy to a set of conditions. A lot of work were needed to
obtain a practical value.
The main idea of this work is to combine a power of mod-
ern codes with general possibilities of variational approach
to get a tool both for simulations and for clarified treatment
of results.

2 PROCEDURE

Let consider a symmetrical periodic structure. At Fig. 1
periods of the Disk and Washer (DAW) structure and the
Disk Loaded waveguide are shown together with definition
for further explanations. The mirror symmetry plane is at
z = 0.

Figure 1. A geometry and definitions for the Disk and
Washer structure (a) and Disk Loaded Waveguide (b).

The travelling wave complex amplitude ~E = < ~E � �= ~E
has components with different parity with respect z = 0
[3]. Suppose real part ~E satisfy boundary condition of
’electric wall’ (denoted further as (e)) [�;< ~E] = 0 at
z = 0. Than imaginary part must satisfy to condition of
’magnetic wall’ (denoted further as (m)), (�;= ~E) = 0.
By using a numerical code, let simulate and store for the
structure under investigation a set of 0- and �-type modes.
In the structure with symmetry plane 0-type modes can be
calculated considering one half of the period in conditions
(ee) ((e) at z = 0 and (e) at z = d=2) and (mm). The
�-type modes should be calculated in conditions (em) and
(me). For the DAW structure an example of such set is
shown in Fig. 2.

Supposing all modes are normalized 2W =R
V
�0 ~E

�

n
~EndV = 1, let consider these four families of

modes (functions), (ee); (em); (me) and (mm) as a basis of
trial functions for variational approach. Each function sat-
isfies to the Maxwell equations and boundary conditions at
the metal surface in the real shape of the structure. Each
function is a limit for the travelling wave field distribution
when a phase shift � per structure period � ! 0 or � ! �
and described the field well in the vicinity of 0 or � mode.
This basis is not ortohonal, it is not dangerous. More im-
portant this basis is complete and no potential functions are
need for travelling wave field description.
The idea to represent field of an arbitrary � as a sum over
several modes is not new. It is usual for the lumped cir-
cuit method. For two limiting modes there are electrody-
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namic result in [1]. The question is only in the precision of
description and ability to investigate quite different struc-
tures.
Let represent < ~E and = ~E as:

< ~E =

NeeX
n

ceen
~Eee
n +

NemX
n

cemn
~Eem
n ; (1)

= ~E =

NmeX
n

cme
n

~Eme
n +

NmmX
n

cmm
n

~Emm
n :

This representation (2) satisfies to parity conditions for< ~E
and = ~E.
In a periodic structure the field distributions must satisfy to
the Floquet condition:

~Ez=d=2 = ~Ez=�d=2e
���: (2)

In symmetrical structures the condition for electric field
tangential components:

(~�( ~Ee��=2 + ~E�e���=2))z=d=2 = 0; (3)

is equivalent to (2). One can proof it directly, involving< ~E
and = ~E parities or see [3] for particular case of the TM0

modes. The expression similar (3) may be obtained and
for magnetic field tangential components. Remember, only
tangential components are necessary to define the internal
electrodynamic problem.
One can check directly, the expression:

!2 =

R
V

1

�0
rot ~E�rot ~EdV + ISR
V �0 ~E� ~EdV

; (4)

Figure 2. The basis of trial functions for the DAW
structure. 0 modes - (ee), (mm) and � modes (em), (me).

with

IS =
1

4

Z
S1

~�[( ~Ee���=2 + ~E�e��=2)
1

�0
(rot ~E�e��=2 +

(5)

+rot ~Ee���=2)]dS +
1

4

Z
S2

~�[( ~Ee��=2 + ~E�e���=2)

1

�0
(rot ~Ee��=2 + rot ~E�e���=2)]dS;

is variational one for the problem of the travelling wave
propagation in symmetrical periodic structure.
Substituting (2) in (6) and following to a standard varia-
tional technique (the Ritz technique), one come to the gen-
eralized symmetrical eigen-value problem:

AC � k2BC = 0; (6)

where C is the column of unknown coefficients cn in (2),
A and B are square block-type matrixes:

A =

0
BB@

Aee
ee Aem

ee 0 Amm
ee

Aem
ee Aem

em Ame
em 0

0 Ame
em Ame

me Amm
me

Amm
ee 0 Amm

me Amm
mm

1
CCA

B =

0
BB@

Bee
ee Bem

ee 0 0
Bem
ee Bem

em 0 0
0 0 Bme

me Bmm
me

0 0 Bmm
me Bmm

mm

1
CCA

Coefficients of these matrixes are for blocks

(Aee
ee; A

em
em; A

me
me; A

mm
mm); aij = Æijkikj ; (7)

(Bee
ee ; B

em
em ; Bme

me ; B
mm
mm); bij = Æij ;

(Bem
ee ); bij = �0

Z
V

~Eee
i
~Eem
j dV;

(Bme
mm); bij = �0

Z
V

~Emm
i

~Eme
j dV;

for block (Aem
ee ):

aij = kikjbij + sin �

Z
S2

~�[ ~Eem
i ;

1

�0
rot ~Eee

j ]dS; (8)

for block (Ame
mm):

aij = kikjbij � sin �

Z
S2

~�[ ~Emm
i ;

1

�0
rot ~Eme

j ]dS; (9)

for block (Ame
em):

aij = �(1 + cos �)

Z
S2

~�[ ~Eem
i ;

1

�0
rot ~Eme

j ]dS; (10)

for block (Amm
ee ):

aij = (1� cos �)

Z
S2

~�[ ~Emm
i ;

1

�0
rot ~Eee

j ]dS; (11)

The off-diagonal blocks describe mode coupling due to
both non-ortohonal basis (like B em

ee ) and surface coupling
(like Ame

em). Dimension of the A and B matrixes N =
Nee + Nem + Nme + Nmm is not so large (40 � 100)
and numerical solution is not a question by using modern
computing libraries.
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Figure 3. The Brillouin diagram for the DLW. The solid
lines - direct calculations, the dashed lines - the

decomposition.

Table 1. The relative frequency diffferences for the DLW
passbands between direct simulations and decomposition

(multiplied by 104).
� 1 2 3 4 5 6
0.0 0.66 0.33 0.94 0.03 4.88 2.81
30.0 4.46 1.85 0.66 3.13 9.41 8.16
60.0 4.45 3.12 0.61 11.8 0.92 2.44
90.0 1.51 4.15 0.06 13.8 1.83 3.21
120.0 2.48 4.07 0.97 12.7 2.28 3.83
150.0 6.13 2.50 1.38 7.79 1.45 2.30
180.0 9.41 0.15 2.94 1.70 0.59 0.65

3 APPLICATIONS

Structure parameters calculations. At present the code
using this method of the field decomposition is realized at
the base of our 2D FEM code set [4]. For all numerical
experiments we took Nee = Nem = Nme = Nmm = 8.
In general, according theory, the number of modes have to
be taken so that a highest eigenvalues for each family are
approximately equal.

In Fig. 3 the Brillouine diagram for DLW (see Fig. 1)
is shown with seven passbands of TM0 type. As for the
computing resources, it is cheaper to get the total diagram
shown in Fig. 3 (starting with basis storage) then do two
direct numerical simulations for different � values. In num-
bers a relative differences between results of direct simula-
tions and by using decomposition are presented in Table 1
for 6 DLW TM0-type passbands.

One can see a good coincidence between results of dif-
ferent methods. It is interesting also, that the relative error
doesn’t relate obviously with the passband number. Usu-
ally for numerical methods the error rises for higher order
passbands.
But DLW is a narrow-band (in the main passband) struc-
ture. For wide-band DAW structure in Fig. 4 are shown
five passband, calculated in the same way as for DLW in

Figure 4. The Brillouin diagram for the DAW. The solid
lines - direct calculations, the dashed lines - the method

presented.

Fig. 3. The relative errors are several times larger and drop
fast with the basis extension.
In general, the problem (6) has N eigenvalues. But phys-

ical sense has only min(Nee + Nmm; Nem + Nme) so-
lutions, describing real passbands. And the problem (6)
in general is not-positive defined. This problem has ’ad-
ditional’ solutions without physical sense. The main part
of ’additional’ solutions either have k2 < 0 or k2 �
max(k2i ), so, can be filtered easily. But can be a case when
an ’additional’ passband is the frequency region under in-
vestigation (see Fig. 3). This case the correct filtering al-
gorithm is not developed jet. But real passband must start
from one of the modes in the basis. ’Additional’ passbands
depend strongly on N . It allows us to distinguish real and
’additional’ passbands.
Structure investigations. The equation (6) can be consid-
ered as a dispersion equation of the structure for arbitrary
passband. From direct solution (6) with large N we can,
comparing cn values in (1) estimate, which kind of modes
is important for the field description in a given passband
and remove non-important modes from consideration, re-
ducing dimension of the equation (6). It allows to do ana-
lytica estimations [5]. The restricted equation (6) is also a
base for the structure equivalent scheme development.
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