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Abstract ditive since the dynamic friction coefficient and diffusion
Lanaevin simulation provides an effective wav to stud Col_coef'ficient in the Fokker-Planck equations depend on the
-angevin simuiationp . y1to y ﬁpatial position. An effective numerical algorithm to inte-
lisional effects in beams by reducing the six-dimensiona

Fokker-Planck tion to a aroun of stochastic ordina rate the stochastic differential equation with multiplicative
OKKer-rianck equa group ¢ X oise will significantly improve the efficiency of large scale
differential equations. These resulting equations usual

have multiplicative noise since the diffusion coefficients inyangevin simulation.
Pl . o . The stochastic leap-frog algorithms in the Langevin sim-
these equations are functions of position and time. Con-

ventional alaorithms. e.a. Euler and Heun. give onl firSyla’[ion are given in Section Il. Numerical tests of this algo-
g » €9- » 9 Y IShithms is presented in Section Ill. A physical application

order convergence of'moments In a fmﬂe time interval. I%f the algorithm to the multiplicative-noise mechanic os-

this paper, a stochastic leap-frog algorithm for the numeri= C2 . . .
) . ) A . . cillator is given in Section IV. The conclusions are drawn

cal integration of Langevin stochastic differential equations .

. C T in Section V.

with multiplicative noise is proposed and tested. The al-

gorithm has a second-order convergence of moments in a

finite time interval and requires the sampling of only one 2 STOCHASTIC LEAP-FROG

uniformly distributed random variable per time step. As ALGORITHM

an example, we apply the new algorithm to the study of

mechanical oscillator with multiplicative noise. fh the Langevin simulation, the stochastic particle equa-

tions of motion that follow from the Fokker-Planck equa-
tion are (Cf. Ref.i[2])
1 INTRODUCTION

Multiple Coulomb scattering of charged particles, also F

called intra-beam scattering, has important applications in v = — —uv+VDI(t), (2)
accelerator operation. It causes a diffusion process of par- m

ticles and leads to an increase of beam size and emittaneghereF is the force including both the external force and
This results in a fast decay of the dityaof beam and re- the self-generated mean field space charge forcis, the
duces the beam lifetime when the size of the beam is largeass of particley is friction coefficient,D is the diffusion

¥ = v, Q)

enough to hit the aperturi_a' [1]. coefficient, and’(¢) are Gaussian random variables with
An appropriate way to study the multiple Coulomb scat-

tering is to solve the Fokker-Planck equations for the dis- (ri(t)) = 0, 3)

tribution function in six-dimensional phase space. Never- (L;OT; )y = @t —1t). (4)

theless, the Fokker-Planck equations are very expensive to

solve numerically even for dynamical systems possessirig the case not too far from thermodynamic equilibrium,
only a very modest number of degrees of freedom. Truncéhe friction coefficient is given as

tion schemes or closures have had some success in extract-

ing the behavior of low-order moments, but the systematics L 4y/mn(r)Z%e* In (A) (5)

of these approximations remains to be elucidated. On the 3m2(T(r)/m)3/2

other hand, the Fokker-Planck equations can be solved us- o . . .

ing an equivalent Langevin simulation, which reduces th@nd the diffusion coefficienb is D = vkT /m [8]. Here,
six-dimensional partial differential equations into a groug(r) iS the density of particle/'(r) is the temperature of of

of stochastic ordinary differential equations. Compared tB8am.Z is the charge number of particleis the charge of

the Fokker-Planck equation, stochastic differential equ&!€ctron,A is the Coulomb logarithm, ankl is the Boltz-
tions are not difficult to solve, and with the advent of modM&nn constant. For the above case, noise terms enter only
ern supercomputers, it is possible to run very large nuni? the dynamical equations for the particle momenta. In
bers of realizations in order to compute low-order momentsd": @) be!ovy, the indices are 'Slngle-partlcle' phase-space
accurately. In general, the noise in these stochastic ordeerdinate indices; the convention used here is that the odd
nary differential equations are multiplicative instead of adindices correspond to momenta, and the even indices to the
spatial coordinate. In the case of three dimensions, the dy-

*Work supported by DOE Grand Challenge in Computational Accelemamical equations then take the general form:
ator Physics, Advanced Computing for 21st Century Accelerator Science
and Technology Project, and Los Alamos Accelerator Code Group usi —  F(21. %o Tn.Ta. Tr. T o11(To 24 T t
resources at the Advanced Computing Laboratory and the National Er]-1 1( 1o 258, 4, 5, 6) T 11( 24 6)&( )
ergy Research Scientific Computing Center. ta = Fy(x1)
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i‘g = Fg(l‘l, X9o,X3,L4,Is, l‘6) + 0'33(l‘2, X4, $6)€3(t) 219 white noise without damping ~—+--2
. 218

y = Fy(zs)

. 217 +

&5 = Fs(x1, 20,23, 24, L5, 26) + 055(22, T4, 26)E5 (1) .

i‘6 = F6(l‘5) (6)

e
Iy

In the dynamical equations for the momenta, the first term§ 2ut
on the right hand side is a systematic drift term which in- 21}
cludes the effects due to external forces and damping. The ..|
second term is stochastic in nature and describes a noise ,,,|
force which, in general, is a function of position. The noise
&(t) is first assumed to be Gaussian and white as defined ‘ ‘ ‘ ‘ ‘
by Eqns. (3)4¢4). The stochastic leap-frog algorithm for o1 02 03 o4 0s os
Eqns. (b) is written as

21

= _ D g Figure 1: Zero damping convergence tést}(t)) at¢ = 6
zi(h) = Dilh)+5i(h) ) as a function of step size with white Gaussian noise. Solid
The deterministic contributio; (h) can be obtained us- lines represent quadratic fits to the data points (diamonds).
ing the deterministic leap-frog algorithm. Here, the deter-
ministic contributionD; (k) and the stochastic contribution hereR i iformlv distributed rand b th
S;(h) of the above recursion formula for one-step integraw erefv 1S a uniformly distributed random number on the
tion are found to be interval (0,1). This trick significantly reduces the computa-

tional cost in generating random numbers.

Di(h) = &(0)+hIy(37, 73, 75,75, T3, T5);
{i=1,3,5} 3 NUMERICAL TESTS
Di(h) = &} The above algorithm was tested on a one-dimensional

stochastic harmonic oscillator with a simple form of the

1 —% % ok ok —% —%\7 .
t3hk [eima 4 A (77, @5, 5, 24, 75, 7)) multiplicative noise. The equations of motion were

{i=2,4,6}
5 _ 1 3/273 = Filp, )+ o(2)é(?)
Si(h) = ouVhWi(h) + §Fz’,k0'kkh Wi(h) i = p (12)
1 -
+§U“7‘7’th3/2m(h) where Fiy (p,z) = —yp — n*z ando(z) = —az. The
1 . - stochastic leapfrog integrator for this case is given by
+1Fiykl‘7kk‘7llh Wi(h)Wi(h); Eqns. {(8) (white noise) with the substitutions = p,
{i=1,3,5; j=2,4,6; k,l=1,3,5} Ty =2 _ _
- 1 . As a first test, we compute@?) as a function of time-
Si(h) = ﬁFi,jUjth/zwj(h) step size. To begin, we took the case of zero damping con-
1 stant ¢ = 0), where(z?) can be determined analytically.
+1Fiyjjgj2,jh2wj(h)wj(h) The curve in Figi .1 showéer?) att = 6.0 as a function

of time-step size with white Gaussian noise. Here, the pa-
rameters; and« are set tol.0 and0.1. The analytically
determined value ofz?) at¢ = 6.0 is 2.095222. The
guadratic convergence of the stochastic leap-frog algorithm
1i=1,2,3,4,56} (8) is clearly seen in the numerical results. We also verified
that the quadratic convergence is present for nonzero damp-
ing (y = 0.1). Att = 12.0, and with all other parameters

{i=24,6;j=1,3,5}

5l
Il

; z;(0) + §hFi(f1,i‘2,i3,f4,f5,i6)

wherelV;(h) is a series of random numbers with the mo

ments as above, the convergence(ot) as a function of time step
Wi(h)) = ((i(h)®) = (Wi(h)®) = 0 (9) is shown by the curve in Fig: 2. As a comparison against
(W(h)2) = 1, (Wi(h)") =3 (10) the conventional Heun'’s algorithrii [5], we computad )

as a function of using100, 000 numerical realizations for

This can not only be achieved by choosing true GaussighParticle starting fronf0.0, 1.5) in the(, p) phase space.
random numbers, but also by using the sequence of randdri€ results along with the analytical solution and a numer-

numbers following: ical solution using Heun’s algorithm are given in Fig. 3.
Parameters used wete= 0.1, 7 = 1.0, anda = 0.1. The
—/3, R<1/6 advantage in accuracy of the stochastic {&ag algorithm
Wi(h) = 0, 1/6 < R<5/6 (11) over Heun’s algorithm is clearly displayed, both in terms
V3, 5/6 < R of error amplitude and lack of a systematic drift.
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Figure 2: Finite damping~( = 0.1) convergence test. Figure 4: Temporal evolution of the scaled average energy
(z?(t)) att = 12 as a function of step size with white (F(¢)) with multiplicative noise from numerical simulation
Gaussian noise. Solid lines represent quadratic fits to tlaad analytical approximation.

data points (diamonds).

analytical calculation is due to the truncation in the energy
envelope equation using th&?(¢)) ~ 2(E(t))* relation
which yields an upper bound on the rate of equilibration of
the average energi_A [6].

12t

Exact ] 5 CONCLUS'ONS

We have presented a stochastic leap-frog algorithm for
Langevin simulation with multiplicative noise.  This
method has the advantages of retaining the symplectic
Error: Heun property in the deterministic limit, ease of implementa-
o tion, and second-order convergence of moments for mul-
tiplicative noise. Sampling a uniform distribution instead
. . . of a Gaussian distribution helps to significantly reduce the
0 100 200, 300 400 500 computational cost. A comparison with the conventional
Heun's algorithm highlights the gain in accuracy due to the
new method. Finally, we have applied the stochastic leap-
Figure 3: Comparing stochastic leap-frog and the Heun &frog algorithm to a nonlinear mechanic-oscillator system to
gorithm: (z?(t)) as a function of. Errors are given relative investigate the the nature of the relaxation process.
to the exact solution.

)

Error: Leapfrog
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