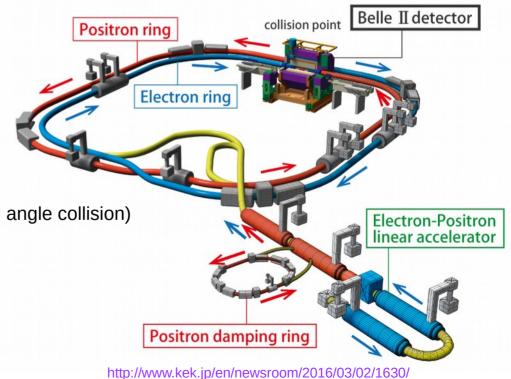
Status of Early SuperKEKB Phase-3 Commissioning


Akio Morita

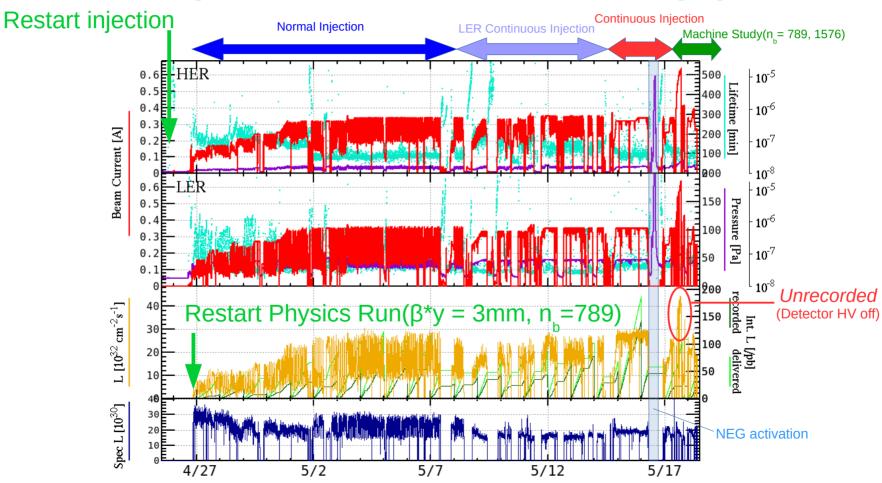
IPAC 2019 WEYYPLM1 2019/05/22

SuperKEKB Accelerator

- Double ring collider for Belle 2 experiment (B-meson Physics)
 - Main rings
 - 7GeV electron storage ring (HER)
 - 4GeV positron storage ring (LER)
 - Injector complex
 - electron/positron linac
 - 1.1GeV positron damping ring (DR)
 - Design Parameter
 - Target Luminosity: 8 x 10³⁵ cm⁻²S⁻¹
 - Collision Scheme: "nano-beam" (Large Piwinski angle collision)
 - Beam Current: 3.6/2.6A (LER/HER)
 - Crossing Angle: 83mrad
 - $\sigma^*x \sim 10 \mu m$, $\sigma z \sim 6 mm$
 - β *y ~ 300 μ m

http://www-superkekb.kek.jp/

Staging of SuperKEKB Commissioning


- Phase-1 2016/02/01 ~ 06/28
 - For low emittance operation test & vacuum scrubbing without final focus system
- Phase-2 2018/03/16 ~ 07/17
 - For "nano-beam" collision test with final focus system & Belle 2 detector except vertex detector
- Phase-3 2019/03/11 ~
 - For full-scale collider experiment with full Belle 2 detector

Hardware Updates since Phase-2

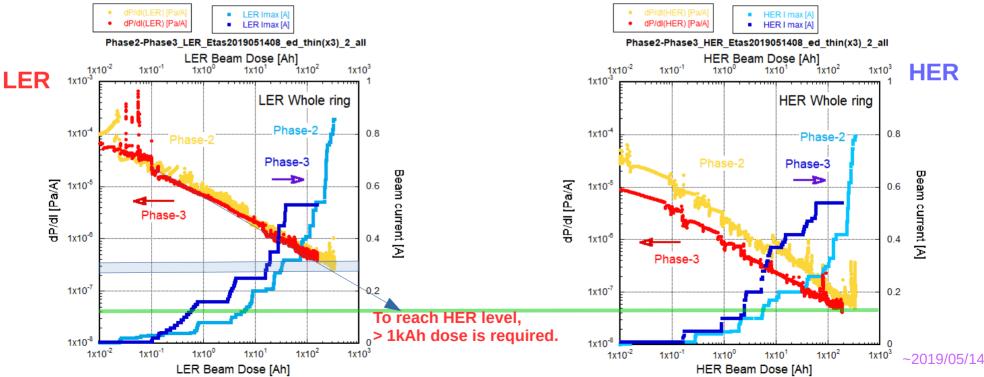
- Interaction Region(IR) Disassembly & Reassembly
 - IR is reassembled to install Belle 2 vertex detector(PXD & SVD).
 - Signal cables of L-side QC1 BPMs(QC1LP for LER, QC1LE for HER) are damaged during QCS cryostat insertion process.
 - Not critical because 3 signal cables are still available for 4 electrode BPM.
 - BPM gain calibration & consistency check for QC1LP & QC1LE become impossible.
 - IP orbit feedback accuracy will be degraded.
- Beam Collimator
 - HER & LER vertical beam collimator head damaged during Phase-2 commissining are replaced.
 - Additional 4 horizontal collimators are installed(1 for HER, 3 for LER).
 - Additional vertical collimator is installed for LER.
- Skew Quadrupole Correctors
 - IR skew quadrupole magnet excitation range is extended x2.23 by adding extra winding(10 magnets for HER, 6 magnets for LER).
 - Number of arc skew quadrupole correctors is almost doubled by installing additional power supply for skew quadrupole winding for SF-family chromaticity corrector sextupoles.

Operation Overview(1) Vacuum Scrubbing(n_{b} =1576) Physics Run(n = 789) Detuned Optics β*y=8mm <mark>β*y=8mm 4mm 3mm</mark> Fire in linac building 0.5 HER 1500 · 10⁻⁵ 1000 Lifetime [min] 0.4 **10**⁻⁶ 0.3 Beam Current [A] 0. 10⁻⁷ 0 **10⁻⁸** 350 -LER 0.5E **10**⁻⁵ 300 Pressure [Pa] 0. 250 10⁻⁶ 200 0.3 150 0.2 **10**⁻⁷ 100 0.1 50 50000 4000 30000 10⁻⁸ 12 $L [10^{32} \, cm^{-2} s^{-1}]$ 10 **NEG** activation Int. 2000 gelivered 0.0 Spec L [10³⁰] 0.08 0.06 0.04 0.02 3/11 3/16 3/21 3/26 4/1

Operation Overview(2)

Initial Optics & Orbit for Phase-3

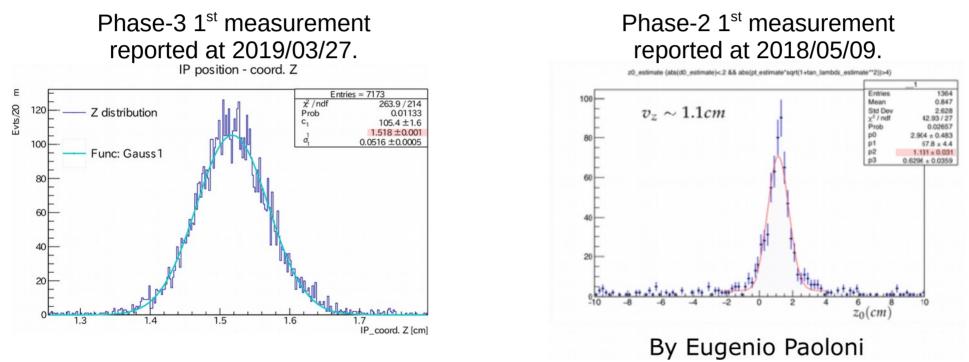
- Initial Optics & Correction Fudge
 - Optics: Detuned Optics operated in Phase-2
 - $(\beta^*x, \beta^*y) = (384mm, 48.6mm)_{LER}, (400mm, 81mm)_{HER}$
 - Fudge: Phase-2 Latest Fudge except final focus quadruple(QCS) Waist & R2*
 - For changing QCS waist & R2* knob parameter handling
 - IP waist & R2* knob tuning(most efficient luminosity tuning knob) by QCS is cleared.
- Initial Reference Orbit & Steering Parameter
 - Use Phase-2 data-set during Detuned Optics Operation.
 - IP V-offset for collision & H-offset for adjusting vertex position during Phase-2 are cleared.


Beta Squeezing

- Squeeze β^* down to $\beta^*y=3mm$ collision optics by tracing way-point optics used in Phase-2.
 - Beam collimator setting & detector loss monitor abort are important for avoiding QCS quench.
 - Linac injection charge limiting workaround is useful to prevent loss monitor abort during 1st injection to squeezed optics before xy-coupling correction.

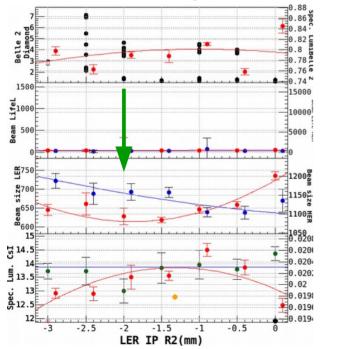
(β*x, β*y)	Established Date in Phase-3 (2019)		Established Date in Phase-2 (2018)		
	LER	HER	LER	HER	
Detuned	3/13	3/11	3/31	3/20	
(200mm, 8mm)	3/18	3/18	4/16	4/10	
(200mm, 6mm)	3/25	3/25	5/14	5/10	
(200mm, 4mm)	3/26	3/26	5/24	5/24	
(200/100mm, 3mm)	3/28	4/1	6/5		e-2 Collision Optics
LER/HER	No QCS Quench		27 QCS Quenches to complete Squeezing		zing
Detuned → 3mm Collision	~3weeks (22days)		~3months		

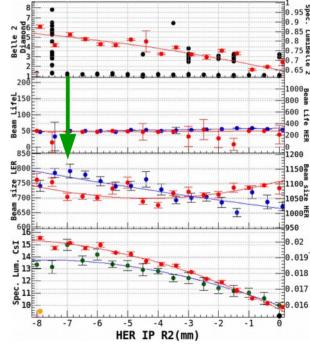
Whole Ring Vacuum Pressure


- HRE vacuum pressure is already reached phase-2 level.
- LER vacumm pressure is still higher than phase-2.
 - Further scrubbing is required to reduce beam-gas detector background.

IP Orbit for Collision

Comparison of measured longitudinal vertex position determined by relative horizontal orbit at IP.

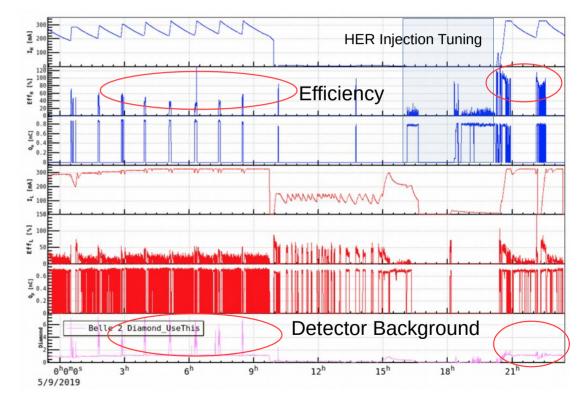

Note: Phase-3 initial data-set for orbit & steering is based on Phase-2 detuned optics operation.



- Good agreement with Phase-2 measurement.
- Relative location of QCS magnets seems to be preserved after IR reassembly.

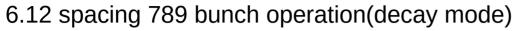
IP Coupling for Collision

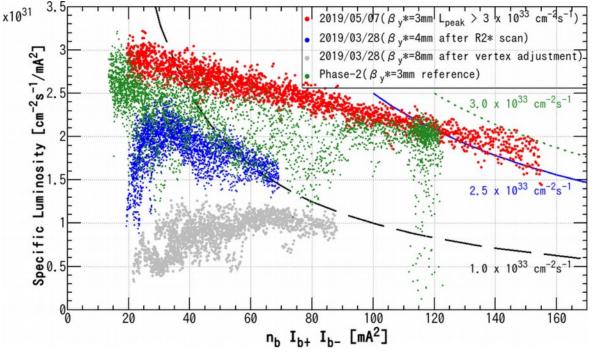
First R2* (IP xy-coupling) knob scan on β*y = 4mm optics at 2019/03/30.
(R2* is most important knob for SuperKEKB luminosity tuning.)
Initial R2* tuning knob of Phase-3 is 0. (Cleared due to QCS knob cleanup)



Expected optimum R2* from Phase-2 tuning: -2/-7mm(LER/HER)

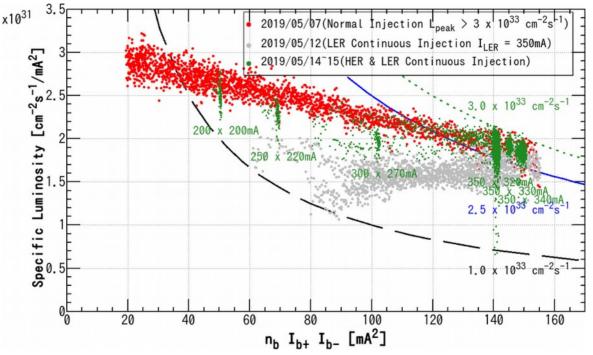
- Good agreement with Phase-2 optimum.
- Relative rotation of QCS magnets seems to be preserved after IR reassembly.

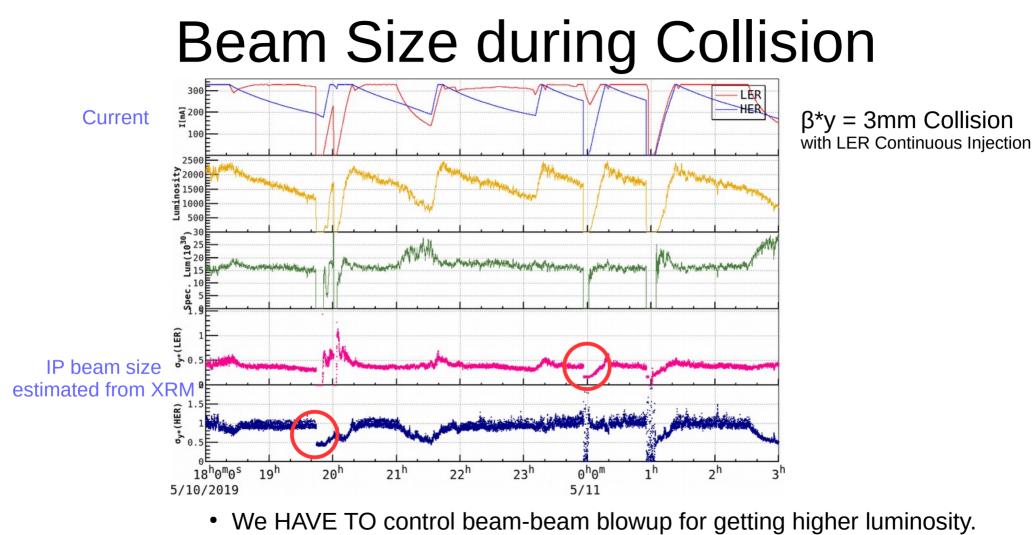

Systematic Injection Tuning


- Tuning to minimize betatron & synchrotron oscillation of injection beam measured by using TbT ring BPMs & 1-turn injection mode.
 - Longitudinal tuning items
 - Linac & BT energy feedback
 - Linac energy spread
 - Injection phase
 - Transverse tuning items
 - BT end orbit feedback
 - Septum position & angle
 - Kicker height & jump
 - Vertical steering

Injection efficiency(rate) & detector background are improved.

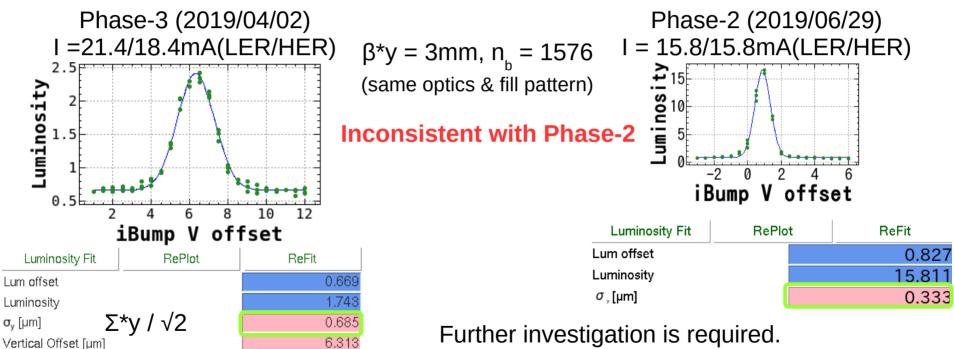
Specific Luminosity(1)




- Improvements by squeezing β *y & Luminosity Tuning are reconfirmed.
- Lsp in 370/350mA(LER/HER) decay mode reaches almost same level of Phase-2.
- Current dependent V-offset feedback target improves Lsp during decay.

Specific Luminosity(2)

6.12 spacing 789 bunch operation(decay mode & continuous injection mode)



• By using continuous injection, collision & luminosity tuning become easier because of stable beam current.

• HER single beam size is larger than LER's one. ($\epsilon_{y,HER} \sim 4\epsilon_{y,LER}$)

Low Bunch Current Beam Size measured by Beam-Beam Scan

This measurement is larger than expected value from typical single beam size: $\sigma^*y_{\text{LER,HER}}$.

Further investigation is required.

- Optics distortion(xy-coupling/dispersion)
- Lack of IP xy-coupling/dispersion tuning
- iBump(Collision V-Bump) calibration error

Operation Summary

- IR orbit & optical function are consistent with Phase-2 after IR (final focus system) reassembly.
- 789-bunch(6.12spacing) luminosity performance on β *y=3mm optics is reconfirmed.
 - Lp = 3.07 x 10³³ cm⁻²s⁻¹ 346/335mA(LER/HER) @ 2019-05-07 07:07 JST (decay mode)
 - Lp = 3.13 x 10³³ cm⁻²s⁻¹ 347/338mA(LER/HER) @ 2019-05-15 20:30 JST (continuous injection) (New "recorded" luminosity record in this fill pattern during SuperKEKB commissioning)
- Beam operation is continuing without QCS quench.
 - Beam collimator tuning and detector loss monitor abort works well to protect QCS.
- Linac/Injection tuning & beam collimator tuning improve Belle2 detector background.
 - HER & LER continuous injection operation is started since May 14. +50% ~ +60% for integral
 - Belle2 recordable luminosity is improved compared with phase-2.
 - Belle2 detector runs with 3 x 10^{33} cm⁻²s⁻¹ luminosity.

+50% for integral

- Phase-2 recordable limit is almost 2 x 10³³ cm⁻²s⁻¹.

x2 improvement of integrated luminosity compared with Phase-2.

Major Issues

- High current operation
 - 1A is required for 10^{34} cm⁻²s⁻¹ luminosity on β *y=3mm optics.
 - LER beam instability found at >800mA operation in Phase-2 HAS TO be reconfirmed & resolved.
- Beam-beam blowup
 - Specific luminosity degrades because of beam-beam blowup. (Achieved $\xi_v < 0.03$)
 - Big IP chromatic aberration is suspected, however, it is not confirmed by measurement.
 - Vertical beam size measured by beam-beam scan on ultra low bunch current collision is different with phase-2 study result. (Further investigation is required)
- Single beam blowup in HER
 - Beam size measured by X-ray Radiation Monitor is too large compared with expected size from xy-coupling & dispersion measurement. (Further investigation is required)