
PROTOTYPE OF A DDS-BASED HIGH-LEVEL ACCELERATOR
APPLICATION ENVIRONMENT*

N.Malitsky, J.Shah, BNL, Upton, NY 11973, USA
N.Hasabnis, Stony Brook University, Stony Brook, 11794 NY, USA

R.Talman, Cornell University, Ithaca, 14853 NY, USA
S.Shasharina, N.Wang, Tech-X Corp., Boulder, CO 80303, USA

Abstract
The paper presents a prototype of the NSLS-II high level

application environment including key middle layer
servers, such as Machine, Online Model and Virtual
Accelerator. The proposed environment is developed and
evaluated on top of EPICS-DDS, an open source
implementation of the DDS standard interface based on
the EPICS Channel Access protocol.

BACKGROUND
A typical accelerator control system employs a three-

tier distributed environment encompassing low-layer
distributed front-end computers controlling physical
devices, a set of middle layer servers maintaining
common data structures and algorithms, and an open
collection of high level thick and thin client applications.
Despite the common infrastructure, requirements of each
layer are different. As a result, in modern accelerator
facilities, the middle layer servers also work as gateways
connecting at least two communication protocols and
interfaces. This paper presents a new homogeneous
infrastructure for the NSLS-II high-level accelerator
environment based on the Experimental Physics and
Industrial Control System (EPICS [1]) and the data-
centric publish-subscribe model of the OMG Data
Distribution Service (DDS [2]). In this approach (see
Figure 1), different layers and components communicate
via the common EPICS protocol, and the high-level
interface between servers and applications is implemented
as the EPICS-DDS extension [3].

Figure 1: High-Level application environment based on
the EPICS-DDS extension.

EPICS is an open source framework and a rich

collection of tools developed collaboratively and used
worldwide for building distributed real-time control
systems in large-scale scientific projects: accelerators,
detector systems, telescopes and others. Its base
infrastructure consists of two layers: distributed
Input/Output Controllers (IOC) and Operator Interface
(OPI) applications. IOC provides uniform interfaces to
heterogeneous physical devices. The heart of IOC is a
memory resident database with a collection of records.
Each record instance, called process variable (PV), has a
record name, a value, and a type-specific set of associated
fields, such as operating range, alarm limits, scanning
rate, and so forth. Client applications can access IOC
records via the Channel Access (CA) interface. The CA
communication interface is based on the TCP protocol
and is highly optimized for dealing with hundreds of
thousands of process variables.

A limitation of the present version of EPICS is that
process variables cannot be structures and are limited to
primitive data types and arrays of scalars. This constraint
seriously mismatches with requirements of high-level
object-oriented applications. This necessitates the
integration of additional middleware such as CDEV,
CORBA, JMS, or DDS.

DDS is a next generation of middleware industrial
standards, bringing a data-centric publish-subscribe
(DCPS) architecture to distributed control systems. The
overall conceptual model is shown in Figure 2 and
encapsulates the following major concepts:

Figure 2: Data-centric publish-subscribe model [4].

*Work supported by DOE contract DE-AC02-98CH10886

TUA005 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

58

• Topics of Typed Global Data Space: a logical
data space in which applications read and write
data decoupled in space and time.

• Data Writer: data producer of the given topic.
• Data Reader: data consumer of the given topic.

Data reader can obtain data two ways: (1)
listener-based asynchronous mechanism and (2)
waitset-based synchronous approach that blocks
the application until designated conditions are
met.

• QoS policies: a rich set of characteristics that
define the behavior of the DDS systems (such as
reliability, liveliness, durability, etc.)

Similar to the OMG CORBA specification, DDS is
language neutral and can be implemented in programming
languages like Java and C++. In contrast with CORBA,
the DDS interface is also protocol neutral, facilitating its
deployment in different distributed systems. Moreover,
the DDS technology extends present run-time
environments with the relational-oriented model. It
creates a basis for developing consistent run-time
interfaces to complex hierarchical structures using well-
established software engineering techniques.

EPICS Channel Access and DDS represent unique
approaches and our initial task was to identify the
common concepts decorated by these different
terminologies. The developer’s intuition and optimism
was based on the fact that both technologies have a long
history of successful projects in neighboring domains.
Moreover, the overall goal was practical: understanding
how the DDS data-centric model can extend the CA
interface for developing high-level applications. As a
result, the initial scope of the EPICS-DDS middleware
was narrowed to the following three DDS concepts
expressed in CA terms:

• Topic: collection of record fields belonging to the
different instances of the same record type.

• Data Reader: maintainer of the CA channels for
getting data from the collection of record fields
associated with the Data Reader’s topic.

• Data Writer: maintainer of the CA channels for
putting data to the collection of the record fields
associated with the Data Writer’s topic.

These suggested associations explicitly identify the
core architecture of EPICS-DDS; setting the DDS Typed
Global Data Space onto the EPICS I/O Controllers and
considering the DDS participants as wrappers of the CA
clients. Starting from this point, we consistently and
incrementally continued to adapt different features of the
CA interface towards the three-tier high level application
environment. The initial list of these features (such as
IOC-based middle layer server, asynchronous and
synchronous cases, hosting and serializing user-specific
structures based on waveform records) was described in
the previous EPICS-DDS paper [3]. In this report, we
combine them to build a high-level accelerator
application environment including key middle layer

servers, such as Machine, Online Model and Virtual
Accelerator.

MIDDLE LAYER
According to the uniform scenario of the three-tier

accelerator application environment, the different middle
layer servers provide the states (the most current values)
of the associated data structures shared by other servers
and high-level client-subscribers. The majority of
accelerator use cases require three data types: collection
of the accelerator element parameters, design linear and
non-linear optics functions, and turn-by-turn data
measured or calculated in beam position monitors.

The description of the accelerator structure and
accelerator devices is a key part of any accelerator
algorithm. Designing the generic accelerator description
is a serious challenge even in the context of off-line
object-oriented programs. The UML model of the
Accelerator Description eXchange Format (ADXF 2.0
[5]) represents one of the recent approaches addressing
different types of accelerator computational tasks (see
Figure 3).

Figure 3: ADXF 2.0 model of the Machine server.

In the off-line environment, this object-oriented model
has been mapped and deployed in several representations
including the XML Schema and the IRMIS relational
database. Adherence of the DDS specification to the
relational model allows reuse of the same mapping
procedure. Particularly, the prototype uses the following
three topics with the associated data structures:

• AccComponent: accelerator component name and
type (e.g. quadrupole);

• AccAssembly: a named sequence of frames with
installed accelerator components;

• AccStrength: accelerator component name and
primary type-specific attribute (e.g. quadrupole
strength). In the next version, this structure will
be extended with the composite attribute id for
supporting arbitrary attributes.

In the context of the DDS specification, these topics are
maintained and published by the Machine server. Other
middle layer servers and high-level clients subscribe to
these topics to synchronize their own containers.

Proceedings of ICALEPCS2009, Kobe, Japan TUA005

Operational Tools

59

Particularly, the Twiss and Virtual Accelerator servers
recalculate and update their own states of the design
optics and turn-by-turn beam data respectively.

One of the important criteria for selecting a high-level
communication interface was support of user-specific
data types. In DDS, it is based on an additional pre-
processor procedure generating the corresponding Data
Reader and Data Writer classes from the CORBA IDL
file describing the new user-specific data structures.
Recently, the EPICS-pvData project [6] introduced a
more dynamic approach derived after the Type Object
pattern. According to this approach, different user-
specific classes are implemented as instances of a single
class PVStructure containing an array of PV Field's. The
content of this array is defined in the corresponding
StructureType object that can be created dynamically or
registered in the introspection service. The pvData
approach complements the DDS IDL-based procedure
without mismatch, since the PV Structure can be
considered as a legitimate data type. In the EPICS-DDS
environment, PV Structure’s Reader and Writer classes
were implemented directly in a framework and used for
processing all accelerator-specific middle layer
containers.

The middle layer servers themselves were built on the
EPICS Portable CA Server (PCAS [7]) framework. The
structures of the Machine and Twiss servers, for example,
are shown in Figure 4.

Figure 4: PCAS-based Machine and Twiss servers.

In the spirit of the Service- Oriented Architecture, these

online services can be configured with the different off-
line accelerator programs. The present prototype was
tested with the Unified Accelerator Libraries (UAL [8])
backend.

CONCLUDING REMARKS
This paper presents a prototype high-level accelerator

application environment based on EPICS-DDS, a new
middleware extension of EPICS, approaching the Data

Distributed Service (DDS) interface based on the EPICS
protocol. The integration of these two technologies
addresses five major tasks. First, DDS brings an industrial
standard interface to the accelerator online environment
allowing a variety of high-level applications and toolkits
to be decoupled from the underlying low-level control
systems, such as EPICS, TINE, TANGO, and others.
Second, the DDS topic-oriented approach elevates the
EPICS Channel Access protocol to high-level
applications, replacing their RPC-like communication
interfaces. Third, DDS creates a basis of Service-Oriented
Architecture (SOA) promoting decoupling of the service
interfaces from their project-oriented implementations. In
the context of high-level application environment, it
provides flexibility in selecting and connecting the most
appropriate modelling algorithms and programs. Fourth,
the DDS specification introduces some guidance for
extending the EPICS infrastructure with the relevant set
of qualities of service. Finally, the DDS technology
extends the EPICS run-time environment with the
relational model, facilitating the design of consistent run-
time interfaces to complex hierarchical structures
according to well-established software engineering
techniques, such as object-relational mapping. Moreover,
adherence to the relational approach creates a platform for
integration of full-scale Data Stream Management
Systems (DSMS) for data stream processing and
archiving.

The positive experience gained from this project
encourages us to further explore and extend the EPICS-
DDS middleware in the development of the full-scale
high-level accelerator application environment.

ACKNOWLEDGEMENTS
The EPICS-DDS project has been shaped and

consolidated from numerous discussions and valuable
inputs of members of Control and Accelerator Physics
groups of the NSLS-II project. We would like also to
thank B. Dalesio and S. Stoller for their support.

REFERENCES
[1] L.Dalesio et al., The Experimental Physics and Industrial

Control System Architecture, ICALEPCS’93
 http://www.aps.anl.gov/epics/.
[2] OMG, Data Distribution Service for Real-time Systems,

Version 1.2, formal/07-01-01
[3] N.Malitsky, J.Shah, N.Hasabnis, EPICS-DDS, PAC’09
 http://sourceforge.net/projects/epics-dds
[4] A.Corsaro, Advanced DDS Tutorial, Real-Time and

Embedded Systems Workshop, July 2008.
[5] N.Malitsky and R.Talman, Accelerator Description

Formats, ICAP'06.
[6] M.Kraimer et al., EPICS-pvData,
 http://sourceforge.net/projects/epics-pvdata
[7] J.Hill. A Server Level API for EPICS, ICALEPCS’95
[8] N.Malitsky and R.Talman, UAL, AIP 391, 1996,

http://code.google.com/p/ual.

.

.

.

TUA005 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

60

