
OPTIONS FOR INTERFACING EPICS TO COTS HARDWARE THROUGH
LABVIEW

A. Veeramani, T. Debelle, National Instruments, Austin, USA
W. Blokland, R. Dickson, A. Zhukov, ORNL RAD, Oak Ridge, USA

Abstract
Over the years, many have developed custom drivers to

interface hardware to EPICS Input Output Controller
(IOC). With LabVIEW having native drivers for
supporting commercial hardware, development time can
be reduced if an interface with LabVIEW and EPICS IOC
was developed. This paper examines the different ways of
interfacing LabVIEW and EPICS IOC both on VxWorks
and Windows operating systems. Implementation of the
Channel Access (CA) server on LabVIEW will also be
covered along with the advantages and limitations of such
an approach. The paper will also list the status of the
different implementations at Oak Ridge and Los Alamos
National Laboratory.

LABVIEW BACKGROUND
LabVIEW is a general purpose graphical programming

environment used to develop measurement, test, and
control systems using intuitive graphical icons and wires
that resemble a flowchart. LabVIEW is supported on a
variety of platforms including Microsoft Windows (2K,
XP, Vista), Linux, and Macintosh. LabVIEW Real-Time,
the embedded systems solution for LabVIEW, is
supported on VxWorks targets on hardware platforms
such as CompactRIO and PXI. LabVIEW offers tight
integration with thousands of hardware devices and
provides hundreds of built-in libraries for advanced
analysis and data visualization.

LabVIEW includes a shared variable engine (SVE) that
runs as a separate process along-side LabVIEW and
LabVIEW Real-Time applications. On Windows,
LabVIEW configures the SVE as a service and launches
the SVE at system start-up. On a real-time target, the SVE
is an installable start-up component that loads when the
system boots. The SVE is a software framework that
enables LabVIEW applications to interact in a distributed
manner with other LabVIEW and 3rd party applications,
see Figure 1. LabVIEW application developers use a
simple read/write API to access variables on a LabVIEW
block diagram.

Figure 1: LabVIEW shared variable nodes.

The SVE uses a plug-in architecture, which makes it
possible to interface with a wide range of data protocols
such as OPC, Modbus Master and Slave.

INTERFACING EPICS AND LABVIEW
In order to take advantage of commercial off the shelf

(COTS) hardware that is available through LabVIEW, the
physics community has come up with different ways to
bridge LabVIEW and EPICS such as the Shared Memory
Interface and Channel Access (CA) Server from Oak
Ridge National Lab. National Instruments has also
developed EPICS client and CA Server in addition to the
EPICS IOC to LabVIEW Real-Time interface that was
developed in partnership with Cosylab.

SHARED MEMORY INTERFACE
The Spallation Neutron Source (SNS) is a particle

accelerator driven pulsed neutron source. The
Experimental Physics and Industrial Control System
(EPICS) is used as the control system for the accelerator
complex. There are more than 300 devices being
controlled by Windows based PCs. These include: Beam
Current Monitors, Beam Position Monitors, Wire
Scanners and more. LabVIEW is used as the software
development environment for these PCs. To integrate with
EPICS clients, a communication interface between
LabVIEW and EPICS is required.

Currently the main method at SNS of connecting
LabVIEW with EPICS is the EPICS Shared Memory
Interface [2]. The idea behind the Shared Memory
Interface is to use shared memory from the operating
system to allow different processes to exchange
information. In principle more than two processes can
communicate through the memory but in practice, the
LabVIEW and EPICS IOC tasks are the only ones. In the
EPICS context the shared variables are called Process
Variables (PV) and the values of these are reflected in the
shared memory. The shared memory interface implements
additional features besides the sharing of values such as:

1. The setting and receiving of interrupts to notify
other processes of events such as new value or to
set the same timestamp for a group of variables

2. The buffering of values to avoid overwriting of
old data that has not been read yet by one of the
processes

3. Information fields about the variable such as the
data type and size

To avoid that the LabVIEW programmer must also be
an EPICS expert, the LabVIEW EPICS libraries generate
all the files needed for the EPICS based on a VI the user
has to customize to declare the variables that will be
shared, see Figure 2. This also means that all declarations
about the shared variables come from one place only and
that is the LabVIEW code. Each time the LabVIEW
program is started, all the EPICS files are regenerated to

Proceedings of ICALEPCS2009, Kobe, Japan THD004

Industrial System in Exp./Acc. Physics controls

913

avoid dealing with the EPICS IOC being out of sync with
the LabVIEW program.

Figure 2: The declaration of a PV through LabVIEW
code.

PURE LABVIEW CA SERVER
The Channel Access protocol is defined not by a

description but by its libraries. This makes it difficult to
implement a new version in a different coding
environment. Only recently, documentation was made
available describing the protocol [3]. This allowed us to
consider a native LabVIEW implementation.

For our purposes, only the CA Server part of the EPICS
IOC is required not the full IOC as all processing is done
in LabVIEW. The main advantage of a LabVIEW native
implementation is that the code will now run on any
LabVIEW version that implements TCP/IP and UDP/IP.

This implementation takes advantage of LabVIEW
dataflow paradigm and delegates all thread management
to LabVIEW. This effectively allows running the same
code on completely different hardware. We implemented
limited set of CA types for testing purposes. The CA
server supports all main CA operations like PUT, GET
and MONITOR and works seamlessly with standard CA
clients.

We have tested this on Windows, Linux, Mac OS X,
CompactRIO [4]. We found that the maximum data
throughput was about 160Mbit/s, which exceeds our
needs. It was used for Beam Diagnostics Class at US
Particle Accelerator School to show the integration of
LabVIEW into an EPICS environment, see Figure 3. We
chose the LabVIEW CA Server because of the simplicity
of the installation; just copy the CA library. There is no
installation or setup required.

Figure 3: Pure LabVIEW CA server used for US Particle Accelerator School Class.

CONFIGURATION BASED CA SERVER
IN LABVIEW 2009

In addition to the EPICS Client available in LabVIEW
since version 8.5, LabVIEW 2009 introduced an EPICS
Server which is really a configuration based CA Server.
Similar to the CA Server implemented by SNS, the CA
Server in LabVIEW allows LabVIEW enabled hardware
to appear as an EPICS node. The processing is all done
using the function blocks in LabVIEW.

Using the configuration based CA Server, which plugs-
in to the SVE architecture, you choose which shared
variables in LabVIEW need to be published as PVs over

Figure 4: Configuration-based CA Server in LabVIEW
2009.

THD004 Proceedings of ICALEPCS2009, Kobe, Japan

Industrial System in Exp./Acc. Physics controls

914

the CA network. The CA Server publishes value (VAL),
description (DESC), timestamp (TIME) and the number
of elements (NELM) in an array data type. This
implementation of the configuration based CA Server can
run on Windows and also in VxWorks and Pharlap RTOS.
With the ability to run on Pharlap RTOS, PXI based
instruments can now be integrated into an EPICS based
control and data acquisition system.

EPICS IOC AND LABVIEW REAL TIME
ON COMPACTRIO

The approach discussed here involves running a full
EPICS IOC on CompactRIO’s VxWorks operating
system alongside with LabVIEW Real-Time [5]. A
prototype of this solution was developed and is in use in
the Los Alamos National Laboratory (LANL). The
CompactRIO RTC is a Power PC processor running
VxWorks – an architecture already supported by EPICS.
The main requirements for the system were:

• System must run full EPICS IOC on the VxWorks
platform.

• The FPGA must be configurable using LV FPGA.
• The two main processes (LV RT and EPICS) must be

able to efficiently exchange data using different data
types and arrays.

• System must be configurable without a need for
recompilation of the EPICS source code (use of text
configuration files).

It was decided to base the work on the Windows-based
approach implemented by SNS discussed in this paper.
The priorities of the EPICS-enabled VxWorks kernel are
adjusted so that EPICS runs at lower priorities than the
LabVIEW code. This prevents EPICS from interfering
with LabVIEW’s time-critical functions.

This system was installed in one accelerating module at
LANL in 2009[6]. Once installed, the new system ran for
the duration of the run cycle without any issues. Major
part of the application was implemented in FPGA
backplane of the CompactRIO. The LabVIEW code
running on the real-time controllers was used only to
serve the data between EPICS and the FPGA. The EPICS
code’s only function was to serve the data between the
operator interface and the CompactRIO. As a result, the
RTC itself was very lightly loaded, and the relative
priorities between EPICS and LabVIEW were not a
problem.

Figure 5: Basic co-habitation architecture.

ACKNOWLEDGEMENTS
ORNL/SNS is managed by UT-Battelle, LLC, for the

U.S. Department of Energy under contract DE-AC05-
00OR22725. The authors would like to thank Eric
Björklund of LANL for sharing experience on using
EPICS and LabVIEW on CompactRIO. We also would
like to thank Rok Šabjan of Cosylab for his work on the
VxWorks and EPICS portions, as well as for the initial
shared library implementation that integrated all the parts
together.

REFERENCES
[1] Experimental Physics and Industrial Control System

http://www.aps.anl.gov/epics/.
[2] D. Thompson and W. Blokland, “A Shared Memory

Interface between LabVIEW and EPICS”,
ICALEPCS 2003, pp275-277. Gyeongju, Korea, Oct
13-17 2003.

[3] Channel Access for Java; http://cosylab.com/
solutions/particle_accelerators/Channel_Access_for_
Java.

[4] A. Zhukov, W. Blokland, R. Dickson, “EPICS
Channel Access Server Implementation in
LabVIEW”, THP018, this proceedings.

[5] A. Veeramani, K.E. Tetmeyer,R. Sabjan, A. Zagar
“Interfacing EPICS IOC and LabVIEW for FPGA
Enabled COTS Hardware”, PCaPAC’08, Ljubljana,
Slovenia. October 2008, TUX01;
http://www.JACoW.org.

[6] E. Björklund, A. Veeramani, T. Debelle “Using
EPICS Enabled Industrial Hardware for Upgrading
Control Systems”, WEP078, this proceedings.

Proceedings of ICALEPCS2009, Kobe, Japan THD004

Industrial System in Exp./Acc. Physics controls

915

