
SOFTWARE INTERLOCKS SYSTEM

J. Wozniak, V. Baggiolini, D. Garcia Quintas, J. Wenninger, CERN, Geneva, Switzerland

Abstract
In the year 2006, a first operational version of a new

Java-based Software Interlock System (SIS) was
introduced to protect parts of the SPS (Super Proton
Synchrotron) complex, mainly CNGS (CERN Neutrinos
to Gran Sasso), TI8 (SPS transfer line), and for some
areas of the SPS ring. The SIS protects the machine
through surveillance and by analyzing the state of various
key devices and dumping or inhibiting the beam if a
potentially dangerous situation occurs. Being a part of the
machine protection, it shall gradually replace the old SPS
Software Interlock System (SSIS) and reach the final
operational state targeting LHC (Large Hadron Collider)
in 2008. The system, which was designed with the use of
modern, state-of-the-art technologies, proved to be highly
successful and very reliable from the very beginning of its
existence. Its relatively simple and open architecture
allows for fast and easy configuration and extension to
meet the demanding requirements of the forthcoming
LHC era.

CONCEPTS
The energy stored in an SPS and LHC beam is orders

of magnitude above the damage level of accelerator
components like vacuum chambers, magnets, etc. For this
reason both SPS and LHC must be protected by an
interlock system, composed of a Beam Interlocks System
(BIS) [1] and the Software Interlock System (SIS). The
role of the BIS is to prevent injection and extraction or
dump the beam whenever a failure may lead to a damage
of accelerator components. It is entirely implemented in
hardware and designed to fulfil extremely high safety and
availability requirements. The SIS complements the BIS
and provides further protection of the accelerator. It
implements more complex logic, which can anticipate
problems rather than merely reacting to them. This logic
can be easily re-configured to respond to changing needs.

Basics of Hardware Interlocks
A number of BIS users (also referred as clients) provide

interlock signals (also referred to as permits) to the BIS.
The permits are logical signals that may be TRUE (beam
operation is allowed, no interlock) or FALSE (beam
operation is not allowed, interlock present). The BIS
applies an appropriate logic to the client signals and
generates one or more output signals. The output signals
are referred to as permit – they “permit” the beam to pass.
The loss of the permit signal leads to a beam dump or to
an injection or an extraction inhibit. For the hardware
interlocks system the connections between client systems
and the BIS as well as the connections to the kicker
system consist of dedicated hardware links. The interlock
logic is performed by appropriate hardware modules.

Software Interlocks
The architecture of the Software Interlock System (SIS)

does not differ fundamentally from the architecture of the
BIS. The main differences arise from the fact that:

• Signal or information transmission is not performed
over dedicated hardware links but through standard
software connections over Ethernet network.

• The interlock logic is performed by software
modules, both within the SIS and at the level of the
client system.

• The SIS is not a hard real-time system with hard time
constraints. The delays amount to several seconds.

The interest of an SIS system even for an accelerator that
is protected by a hardware interlock system arises from a
number of points:

• The SIS is able to anticipate failures and prevent a
beam from being ‘run’ (i.e. produced, injected or
extracted from the injector). It allows a more
efficient operation of the accelerator complex.

• Complex interlock logic may be applied in the SIS,
in particular correlation between different systems.

• Software interlocks are very flexible and may be
added or modified rapidly without need for cables or
additional hardware.

In the context of the CERN accelerator complex, the SIS
provides permit signals to both the General Machine
Timing System (GMT) and the BIS. The signals from the
SIS provide the GMT with the appropriate information to
stop or abort a given class of beams. An adequate reaction
reduces the remnant radiation levels since the beams that
are produced must otherwise be disposed of on a beam
absorber or dump. At the same time the operation of the
injectors may be optimized since a replacement beam
may be operated instead of the interlocked beam. The
connection to the BIS must be in the form of an input
channel such that the SIS has the possibility to dump a
beam and prevent further beams from being injected or
extracted. In this way the software interlock channels of
the SIS have a direct albeit slower connection to the BIS.

Individual Software Interlock Channels
At a fundamental level a software interlock channel is

associated to a measurement of a condition, a device state
or property, a beam property, etc. The measured property
is compared to a desired reference value, with the
outcome that the measurement either matches the desired
value (condition is TRUE) or not (condition is FALSE).
Such a test is defined as an Individual Software Interlock
Channel (ISIC). An ISIC is the basic building block of the
SIS interlock logic. Each ISIC is associated with an
accelerator equipment system and it constitutes the
boundary between the monitored devices and the SIS. An
ISIC may encapsulate a test of a single device or directly

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPB03

Major Challenges

403

for a group of devices belonging to the same equipment
system. The output signal of each ISIC is a logical signal
that can be in one of two states: TRUE or FALSE. The
ISIC is TRUE when the test is successful; it is FALSE
when the test is not successful, either because the
measured property is in an incorrect state or because no
information from the device is available.

Logical Software Interlock Channels
Several ISICs with some logical or geographic

relationship can be grouped into so-called Logical
Software Interlock Channels (LSIC). The state of an LSIC
corresponds to the result of a logical operation applied on
the state of all its ISICs. The logical operation may be an
AND, an OR or a NOT operator. The state of each LSIC
is either TRUE or FALSE.

Permit Signals
Permit signals are top level LSICs which the SIS sends

to the timing and hardware interlock systems. If the
permit is false, the beam is inhibited and/or dumped.

Figure 1: Permit tree.

Interlock Masking
Masking is a mechanism that allows operators to ignore

an individual ISIC or LSIC. Masking a channel means
overriding its real state and evaluating it always to TRUE.
Because masking is a potentially dangerous intervention,
an alarm is activated for each masked channel. The ability
to mask a given ISIC/LSIC is defined for each channel
individually. Permit signals are not allowed to be masked.

Interlock Latching
Usually the states (TRUE or FALSE) of ISICs and

LSICs change according to the equipment conditions,
both for the transition from TRUE to FALSE and for the
opposite transition. In certain cases, it is desirable to latch
the FALSE state, so that the operator can examine the
situation that caused the interlock. Latched interlock
conditions must be manually unlatched from the user
interface.

DESIGN AND ARCHITECTURE
The SIS has a layered architecture, which reflects the two
major tasks of the SIS – data acquisition and data
processing. The data acquisition part collects data from all
monitored devices and puts it into a data buffer. The data
processing part analyzes the collected data by calculating

the values of ISIC, LSIC and beam permits. One main
architectural goal was to make the analysis part as reliable
as possible and thus highly independent of the data
acquisition: even if data acquisition fails, the analysis part
continues to work reliably and cuts the beam if necessary.
As for implementation, the SIS is implemented with
standard controls components used in many other controls
applications.

japc

data buffer

japc-monitoring

Subscription channels

Timing event

Alarms Timing

BIS

?Processing

Acquisition

Controls middleware

Front-end A Front-end B Front-end C Front-end D

sis-core Exporting permit

Figure 2: High level architecture.

Data Acquisition Layer
 This layer acquires data from multiple sources

(devices) using the subscription mechanism provided by
the controls middleware (CMW) [2]. The most important
component of the data acquisition layer is the japc-
monitoring framework. It is a library built on top of JAPC
(Java API for Parameter Control) [3] and CMW that
provides a standard way to develop subscription-oriented
3-tier applications. Japc-monitoring allows developers to
connect so called ‘client modules’ with business logic to
JAPC subscriptions. The client modules just process
updates – they do not have to deal with JAPC specific
code related to subscription management. In the case of
the SIS, the client module is a rolling data buffer from
which data can be extracted and processed by the data
processing layer explained in detail below.

Japc-monitoring has the following main features:
• JAPC parameters configuration management using

XML files.
• Automatic JAPC subscription handling (monitoring,

restarting, etc.).
• Alarms system connection (LASER) [4].
• A diagnostic GUI that visualizes the state of the

subscriptions and the data values received.

Data Processing Layer

This part analyzes the device data and calculates beam
permits. As already mentioned, the interlock logic is
defined as a boolean expression over the subscription
channels (ISICs and LSICs) which is used to calculate the
permit (it constitutes the permit). This expression can be
represented as a tree. The SIS can have multiple trees
corresponding e.g. to geographical locations in the SPS

LSICs

ISICs

Permit

WPPB03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Major Challenges

404

ring and transfer lines. Tree processing starts with a
timing event. Data belonging to a given tree is taken out
of the data buffer (located in Data Acquisition Layer) and
the boolean expression is calculated up the tree to create
the permit value. This data processing is done once per
cycle for each tree. The resulting permit values are
exported to various external systems like BIS, GMT
(timing), LASER (alarms) and possibly others.

Configuration with XML and Velocity
Each of the two main layers is configured separately.

The configuration is stored in XML files. The file for the
data acquisition layer describes all devices (JAPC
parameters) that have to be monitored. The file for the
data processing layer defines the boolean expression trees
for each permit composed of the number of individual and
logical channels. Given the large number of channels
(over a 1000) Velocity [5], a template language, is used to
generate parts of the configuration on the fly, thus
eliminating the need for large, static and verbose text
files. XML inclusions help splitting the configuration into
smaller, logically separated pieces. The configuration
files are all kept in the versioning system (CVS) allowing
for easy change and version maintenance.

Data Persistence
The SIS has a transparent persistence layer that allows

for storing the state of the system during restarts. It is
used to maintain the information about all masked and
latched channels. The persistence layer is designed to be
transparent and fault resistant. It hides possible database
access problems from the rest of the system and retries all
database operations once the connection is restored.

Integration of Components in Spring
All SIS layers and components are connected together

with the use of the Spring framework [6]. All vital
components are defined as Spring beans in an XML file
and managed in a bean container by this framework.
Solutions from Spring have been also applied to provide
remote access to the SIS core service via a JMS channel.

Flexibility of Extensions
The SIS core libraries and components are designed to

be easily configurable and flexible. Extension points
allow developers to provide their own implementation of
components. They cover the areas of system
configuration, data transformation, trigger events and
exporters of the calculated boolean expression tree.
Extension points are implemented using careful interface
design and by leveraging the Spring Framework.

Graphical User Interface (GUI)
As the SIS is a server side application, a GUI was

developed to show the system state to the operators in the
control room. All permit trees are visible and dynamically
updated; channel states are expressed with colours.
Operators can easily search the permit trees using
multiple filtering criteria (e.g. to display only faulty

channels). The GUI allows also for some user actions like
masking, unmasking or unlatching the channel(s). The
GUI is connected to the SIS core via a JMS channel, and
receives all kinds of update messages (tree evaluation,
states, errors, etc) from the server asynchronously.

When a permit evaluates to false and the beam is
dumped, the operator wants to know why. The SIS
provides a sophisticated analysis mechanism that searches
through logging messages and is capable of identifying
several typical fault scenarios, such as a missing data or a
data with incorrect values. It also facilitates viewing
parameter subscriptions’ states by integrating the
diagnostic GUI of japc-monitoring.

Deployment
The SIS project is split into several parts. The core

(server) part constitutes a sis-core project. The GUI is
located in a sis-gui project. Those two do not contain any
proprietary configuration files related to any of CERN
accelerators. The configuration part is extracted in
another project, namely sps-sis (SIS for SPS) and contains
configuration specific for SPS accelerator. This is the
project that is actually released, deployed and run on the
server machine. A separate backup machine exists to
assure safety of operation. The GUI application is
distributed in a form of a Java Web Start JNLP file that
can be executed from any operators console in the control
centre. A JMS broker needed to provide remote services
is run on yet another machine.

CONCLUSIONS
As of today the SIS successfully surveys over 1200

individual software channels for the SPS accelerator. It
has become a vital tool for everyday operations and is
ready to be extended to cover the LHC machine. The
architecture described in this document has proven itself
very reliable in practice making the SIS project a great
success at CERN.

REFERENCES
[1] R. Schmidt et al. “Beam Interlocks for LHC and SPS”,

ICALEPCS’2003, Gyeongju, Korea.
[2] K. Kostro et al., “Controls Middleware: the New

Generation”, EPAC’02, La Villette, Paris, France, 3 -
7 Jun 2002, pp.2028.

[3] V. Baggiolini et al., “JAPC - the Java API for
Parameter Control”, ICALEPCS’2005, Geneva,
Switzerland.

[4] K. Sigerud et al., “First Operational Experience With
Laser”, ICALEPCS’2005, Geneva, Switzerland.

[5] http://velocity.apache.org
[6] http://www.springframework.org

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPB03

Major Challenges

405

