
LHC SOFTWARE ARCHITECTURE [LSA] – EVOLUTION TOWARD LHC
BEAM COMMISSIONING

G. Kruk, S. Deghaye, M. Lamont, M. Misiowiec, W. Sliwinski
CERN, Geneva, Switzerland

Abstract
 The LHC Software Architecture (LSA) project will

provide homogenous application software to operate the
Super Proton Synchrotron (SPS) accelerator, its transfer
lines, and the Large Hadron Collider (LHC). It has been
already successfully used in 2005 and 2006 to operate the
Low Energy Ion Ring accelerator (LEIR), SPS and LHC
transfer lines, replacing the existing old software. This
paper presents an overview of the architecture, the status
of current development and future plans. The system is
entirely written in Java and it is using the Spring
framework, an open-source lightweight container for Java
platform, taking advantage of dependency injection (DI),
aspect oriented programming (AOP) and provided
services like transactions or remote access. Additionally,
all LSA applications can run in 2-tier mode as well as in
3-tier mode; thus the system joins benefits of 3-tier
architecture with ease of development and testability of 2-
tier applications. Today, the architecture of the system is
very stable. Nevertheless, there are still several areas
where the current domain model needs to be extended in
order to satisfy requirements of LHC operation.

SYSTEM OVERVIEW

Scope
The LSA system covers all of the most important

aspects of accelerator controls: optics (twiss, machine
layout), parameters space, settings generation and
management (generation of functions based on optics,
functions and scalar values for all parameters), trim
(coherent modifications of settings, translation from
physics to hardware parameters), operational exploitation,
hardware exploitation (equipment control, measurements)
and beam based measurements [1].

One of the main goals of LSA is to provide a clean and
generic API to all core functionality, to be used by all
operational applications.

Basic Concepts
The whole LSA core functionality is based on a few

fundamental concepts among which the most important
are parameter, setting and context [1].

Parameter
Parameters are organized in hierarchies, whose roots

are usually physics-oriented, high-level parameters (e.g.
tune, chromaticity, momentum, …). Leaves are typically
hardware parameters such as currents. Each hierarchy
describes the relationship between parameters i.e. change
of one parameter always affects all its dependant

parameters. Operators typically intervene on the root
parameters and let the LSA system calculate the
appropriate changes in the derived parameters.

Figure 1: Example of parameters hierarchy where K, I are
magnet parameters and IREF is the power converter
current.

Each parameter is of a specified type which in turn has
a value type - a function (change of value in time) or a
discrete type (scalar or array of scalars).

Context
A context defines a time span in which a parameter can

have a value. We define three types of contexts: super
cycle, cycle and beam process. Super cycle contains a set
of cycles, which produce beams of different types and for
different clients. In cycling machines like the SPS, super
cycles are played repeatedly.

A beam process defines a specific process of a beam
(e.g. injection, ramp, extraction) for a given accelerator or
transfer line.

Setting
A setting represents the value of a parameter in a given

context. Every time a setting of a given parameter is
modified (trimmed), the change is propagated to all its
dependants, in the parameter hierarchy. Settings of
dependant parameters are calculated using so-called make
rules.

Architecture
From the very beginning it was decided that the system

should have 3-tier architecture [2]. There were several
reasons for it: central access to the database and
hardware, central security and caching, reduced network
traffic and load on client consoles, and scalability.

Initially LSA architecture was based on Java 2
Enterprise Edition (J2EE), together with Enterprise Java
Beans (EJB). However, after having disappointing

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WOPA03

Software Technology

307

experiences with EJB standard, LSA team decided to
replace it with a new solution for enterprise systems
labelled as lightweight container. As the actual
implementation of the concept, we have chosen a leading
container - the Spring framework [3].

LSA Architecture
The LSA architecture is based on three main principles:

it is modular (each module has high cohesion providing a
clear API to its functionality), layered (with three isolated
logical layers – database and hardware access layer,
business layer, user applications) and distributed (when
deployed in 3-tier configuration).

Figure 2: LSA architecture.

All applications communicate with the underlying tiers
in two standard ways, using the Java API for Parameter
Control (JAPC) [4] for equipment access and the LSA
Client API to call the business services available in the
LSA core.

The current LSA architecture heavily uses standard
services provided by the Spring framework:

• Database access is implemented using Spring JDBC
abstraction layer.

• Transactions are managed by Spring AOP based
transactions abstraction.

• Synchronous remote communication is done through
Spring HTTP remoting.

• Testing framework, especially for unit testing of Data
Access Objects (DAO).

We have also implemented a caching mechanism with
annotation-driven configuration, using the method
interception facility provided by Spring AOP, and in the
near future we plan to use asynchronous communication
via Java Messaging Service (JMS), which is also nicely
integrated in the framework

2- and 3-tier Deployment
One of the great assets of the LSA system is that all its

applications can seamlessly run both in 2 and 3-tier mode.
The 2-tier mode is vital for development and debugging
while the 3-tier mode is used for operations.

Two design principles facilitate this solution: (1) all
applications do not use directly services provided by LSA
core modules, but always go through a set of client
controllers (façades) defined in LSA Client module; (2)
all these controllers are retrieved using a special service
registry based on Service Locator pattern. The registry
returns either an actual implementation of the controller
(in 2-tier mode) or a dynamically generated HTTP proxy
which makes a remote call to the server (in 3-tier mode).

EVOLUTION TOWARD THE LHC
The initial design of the architecture and the domain

model was based on requirements for the SPS and its
transfer lines and on experience with the Large Electron-
Positron (LEP) collider. While the architecture did not
change significantly for the last 3 years, the data model,
domain model and functionality provided by LSA core
modules have been considerably updated and extended to
address new requirements.

Parameters Space
In the beginning, LSA was used only to manage

function parameters, mainly for SPS power supplies.
However, in view of LHC, LSA shall be more generic and
handle settings of all devices in the machine. Therefore
the LSA parameter space has been extended to support all
types of parameters, including scalars and scalar arrays of
any type. While function parameters specify the change of
a value over time, scalar (and array) parameters describe
time-independent, punctual value (or an array of values)
such as the strength of a kick for a LHC injection kicker
(scalar) or a thresholds table for different levels of energy
for a LHC beam loss monitor (array of scalars).

Context and Settings Management
Unlike SPS or LEIR, the LHC is a non cycling

machine. The machine run will be composed of a
sequence of processes such as injection, ramp, squeeze
that will be executed in an asynchronous way. Some of
these processes, like ramp, will have a known length and
settings for them will be managed using regular super
cycles. The length of other processes, like injection, will
depend on several conditions (e.g. beam quality) and will
not be known in advance. In order to support settings
management for such processes of unknown length, two
additional concepts have been introduced to describe a
context: an actual super cycle and a hyper cycle. An
actual super cycle, as opposed to a regular super cycle,
does not have a length and it is used only to manage
scalar settings for such steady state processes.

A hyper cycle defines a sequence of regular and actual
super cycles which are used in one run of the LHC.

Finally, we introduced settings for context-independent
(called also cycle-independent) parameters whose value
can be changed independently on the beam type in the
machine. Cycle-independent parameters usually represent
thresholds or limits of various devices.

WOPA03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

308

Security and Access Control
Due to the very high energy stored in the LHC beam

and potential damage which could be caused by that, the
LHC machine has strong security requirements.

In order to satisfy these requirements, LSA has been
integrated with two access control infrastructures: Role
Based Access Control and Management of Critical
Settings.

Role Based Access Control (RBAC)
The RBAC [5, 6] infrastructure has been developed in

the frame of LHC at FermiLab Software (LAFS)
collaboration. Its main goal is to prevent accidental and
unauthorized access to the hardware. It is based on access
maps which describe access rules for specified user roles
and hardware properties, taking into account machine
mode or location of the user sending settings. Verification
of user credentials against these access maps is performed
by the Controls Middleware (CMW) [6] at the moment
when settings are sent to the hardware.

Management of Critical Settings (MCS)
The MCS [7] infrastructure has been developed to

complement RBAC with an additional layer of security. It
uses digital signatures to protect data integrity of settings
of the most critical hardware. Usually critical settings will
be modified by experts and immediately sent to hardware,
however in some cases settings might be prepared in
advance by experts, and later on used by machine
operators.

The whole MCS infrastructure is composed of three
components:

• LSA which enforces authentication when trimming
critical settings, requests RBAC to sign new values,
stores new settings together with a digital signature in
the database and sends them to the hardware (if
requested).

• RBAC system, which allows user authentication,
issues a secure token and signs settings with
appropriate private key.

• Front-end Software Architecture (FESA) [8] which
verifies signature using a public key issued for given
hardware type.

LHC Timing
All processes in the LHC (injection, ramp, squeeze, etc)

will be synchronized and triggered by timing events sent
by the LHC timing system [9]. The LSA core provides a
timing service to send timing events and access the timing
real-time data channel. The events can be sent
individually as asynchronous events or structured in
tables. The latter are persisted in the database and can be
loaded/unloaded from the timing system. The system
supports up to 8 concurrent tables containing a maximum
of 256 events. In addition, the LSA timing service will be
used for LHC injection requests by high-level
applications such as the sequencer.

Hardware Transactions
One of the key issues when sending settings to many

devices installed in the LHC ring is the atomicity of that
operation – either all or none succeeds. The lack of
transactional behaviour could lead to serious problems or
even damage caused by the beam. Furthermore all devices
must be synchronized i.e. start to play loaded settings
exactly at the same moment.

To address this requirement a support for hardware
transactions has been recently implemented in the FESA
[8] framework. The basic idea behind is that settings sent
from LSA to the hardware will contain an additional field
representing a transaction identifier. All settings sent with
such an identifier will not be played immediately, but will
wait for a commit. If sending settings to all devices
succeeds, LSA will request a timing event (sent via the
LHC timing system) containing the same transaction
identifier, which will be treated as a commit action.

CONCLUSIONS
As the domain is very complex, the project team started

with a base model which was iteratively extended to
cover newly coming requirements. After a successful
deployment of the system for control of transfer lines,
SPS and LEIR machines two years ago, the LSA team has
began to work on LHC requirements. Today most of the
crucial functionality, required for the first beam in LHC,
is in place and is being tested by machine operators.
Nevertheless, there are still few areas where current
domain model can be improved. In addition, several
specialized applications need to be written and the data
model has to be completed, therefore the coming months
will be certainly challenging.

REFERENCES
[1] M. Lamont, L. Mestre et al, “LHC Era Core Control

Application Software”, ICALEPCS’2005, Geneva,
October 2005.

[2] L. Mestre et al, “A Pragmatic and Versatile
Architecture for LHC Controls Software”,
ICALEPCS’2005, Geneva, October 2005.

[3] http://www.springframework.org
[4] V. Baggiolini et al, “JAPC - the Java API for

Parameter Control”, ICALEPCS’2005, Geneva,
October 2005.

[5] S. Gysin “Role-Based Access Control for the
Accelerator Control System at CERN”,
ICALEPCS’2007.

[6] W. Gajewski “Role-Based Authorization in
Equipment Access at CERN”, ICALEPCS’2007.

[7] V. Kain “Management of Critical Settings and
Parameters for LHC Machine Protection Equipment”,
Functional Specification, CERN, 2006.

[8] M. Arruat “Front-End Software Architecture”,
ICALEPCS’2007.

[9] J.H. Lewis “The CERN LHC Central Timing, a
Vertical Slice”, ICALEPCS’2007.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WOPA03

Software Technology

309

