
USE OF XML TECHNOLOGIES FOR DATA-DRIVEN

ACCELERATOR CONTROLS

Michel Arruat, Stephen Jackson, Jean-Luc Nougaret, Maciej Peryt

Accelerators and Beams Department,

CERN, Geneva Switzerland

ABSTRACT
During the course of the next 2 years, many software systems will need to be developed for the

control and instrumentation of the LHC injector chain. These systems will be based on a standardised

formal model and represented by several XML documents. Developers will require tools to manage

these XML documents and applications that allow them to define the structure and behaviour of each

of their systems. In addition, tools will be required for testing and diagnostics of the software prior to

commissioning in the machine. This paper describes how XML technologies have been extensively

used to produce generic tools capable of fulfilling developers’ needs while ensuring that all systems

adhere to the underlying model. In addition, we will describe how XML and C++ templates have

been used to develop high performance, data-driven real-time code that is capable of fulfilling the

real-time software needs of the LHC.

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.094-5 (2005)

INTRODUCTION
During the past decade, there have been several attempts to create a software framework capable of

capturing the recurring software elements found in the real-time software systems used extensively in

CERN’s accelerator complex. Before the convergence between CERN’s two accelerator divisions

(PS and SL) in 2002, two totally independent frameworks had appeared, both attempting to formalise

how a developer declares these real-time systems’ data (internal variables and properties accessible

over the controls middleware) as well as how the systems should react to the machine timing. In the

late eighties, the PS division developed the Generic Module framework, which provided the basic

building blocks for developers to declare their properties, define the values of initialisation data used

for real-time task variables, as well as a set of well defined libraries and workflows developers should

follow to synchronise their software to the accelerator. The PS system was heavily focused around a

central Oracle database, so not surprisingly the graphical user interfaces were developed using Oracle

Forms. In the early nineties, the SL division developed BISCoTO [1] which aimed to provide a

similar framework, but focused more on delivering a product which automated as many parts of the

final system as possible, giving the developer a fully operational real-time system instantly. A

BISCoTO developer needed only to provide the definitions of internal data-structures, along with

parameters to drive the built-in scheduler to have a system running in a matter of minutes. Unlike the

PS system, BISCoTO was based on flat text files and the graphical user interfaces were in-house

applications written in Swing (Java).

FRAMEWORK HARMONISATION
In 2002, a reorganisation within CERN meant that the PS and SL divisions were merged to form the

new AB (Accelerators and Beams) department. In this new department, it was clear that the two

existing frameworks would need to be harmonised, and a new framework should be created ready for

the LHC era. The FEComSA [2] (Front-End Computer Software Architecture) project aimed to do

exactly this, and in 2003 delivered a fully functioning framework, capable of operating in all of

CERN’s accelerators. One of the FEComSA project’s main objectives was to prove that an AB-wide

framework was feasible without focussing on the intricate details of integrating with existing

infrastructure. It was therefore decided, not to tackle the issue of integrating the FEComSA

framework into the complex PS Oracle database, so like BISCoTO, flat text files where used to store

system designs and configuration data. Many of the Java based graphical user interfaces from

BISCoTO were adapted to be compatible with the new framework, with an increasing focus on the

use of XML and XSL [3] technologies during the automatic code-generation phase.

The FESA (Front End Software Architecture) project was launched in 2004 to complete the

harmonisation, and was charged with producing a framework capable of operating seamlessly in all

CERN’s accelerators. The recent overhaul of the PS Oracle database meant that it was a perfect time

to integrate the development framework directly into the new DBMS.

CAPITALISING ON PRIOR EXPERIENCE FOR FESA
The expectations of the FESA framework were high. Not only did it have to provide the functionality

of its predecessors, but it also had to have the flexibility to adapt to the needs and constraints set by

the new DBMS system and new controls infrastructure. The choice of technologies for both the

framework’s code-generation as well as the graphical user interfaces used by the developers had to be

made carefully so as to allow these parts of the framework to mutate with ever changing requirements.

In addition, the scope of the FESA project had broadened to include other types of systems such as

PLC based systems with special configuration requirements and no real-time constraints as such. To

make matters worse, many of these new requirements had no real specifications meaning that the

framework would have to pass through many iterations of rapid prototyping before it got it right.

Clearly, the work required to change the code-generation components and the graphical user

interfaces to a continuously changing set of constraints and requirements would have to be kept to a

minimum. It was therefore decided to assess the positive and negative aspects of the previous

10th ICALEPCS 2005; M.Arruat, S. Jackson, J-L. Nougaret, M. Peryt et al. : Use of WML Technologies for ... 2 of 6

frameworks before making an informed decision on how to provide the next generation of framework

tools.

Technologies for code generation

 Basic facilities

for loops and

conditionals

Automatically

handles all

framework’s

data-types

Easy to

read and

produce

Industry

standard

Comments

In-house

macro based

templates

W

W

X

W

Only really

maintainable by the

developer who wrote

it!

XSL

templates

X

W

W

X

Have to handle data-

types manually

C++

templates

W

X

X

X

Only provide

support for handling

differing data types

XSL driven

C++

templates

X

X

W

X

Very difficult to read

and produce but

very powerful in the

end!

Figure 1: Code generation requirements of the FESA framework versus technologies available

The use of a bespoke macro based solution for code-generation was successful in both the BISCoTO

and Generic Module frameworks although it suffered 2 major drawbacks. As with any bespoke

solution, the main disadvantage of a non-industry standard solution is that any new requirements must

be implemented in-house. In the case of the earlier frameworks, simple substitution macros

(substituting a tag with values in the developer’s design) were easy to implement, but more complex

constructs such as loops, conditional statements or methods are much more tricky to implement. The

2nd and more obvious disadvantage of an in-house solution is that the knowledge of how it all works is

held by 1 or 2 people, meaning that nobody else in the department has the ability to troubleshoot when

those people aren’t available. This problem is confounded as the in-house solution becomes more

complex to incorporate more complex macros.

XML and XSL technologies are relatively new, but are already proving to be the way forward in

industry. In order to use them in the FEComSA project, it was necessary to encode all design

information in an XML document, and then pass these documents through several XSL templates to

produce the data-driven code for the framework. The rich XSLT language allowed the development

of much more complex framework code templates, incorporating loops, conditional statements, re-

usable methods, etc. What was lacking however was the ability to handle generic framework code for

each of the framework’s primitive types (int, short, float, etc). The FEComSA templates therefore

became cluttered with repeated code, making extensive use of choose/when statements (similar to a

switch statement in C) to handle the different data types.

The positive experience gained from FEComSA, meant that XML and XSL templates were

considered perfect for the FESA framework. To overcome the problem of repeated code for different

primitive types in the framework, it was decided to combine the power of XSL templates with the

generic code facilities of C++ templates. What resulted was a set of intelligent, data-driven, object

oriented, industry standard templates. These templates have been continuously modified during the

evolution of the FESA framework and have proved perfect for handling the ever-changing framework

code.

10th ICALEPCS 2005; M.Arruat, S. Jackson, J-L. Nougaret, M. Peryt et al. : Use of WML Technologies for ... 3 of 6

Graphical User Interfaces for framework users

 Compatible

with new AB’s

Oracle based

controls

database?

Interaction

with a running

server

Handles

XML and

XSLT?

Industry

standard

Comments

Oracle

Forms

X

W

W

X

Problems

incorporating code

generation and

testing over

middleware

Java Swing

with flat

files

W

X

X

W

Not compatible with

the AB Oracle-based

control system

Java Swing

with JDBC

X

X

X

X

Encapsulating SQL

statements into Java

code becomes very

un-maintainable

Java Swing

with XML

over JDBC

X

X

X

X

Up to the database to

shred XML to

extract data into

underlying tables

Figure 2: GUI requirements of the FESA framework versus technologies available

As with code-generation, the FESA framework had several options to choose from when deciding

how to tackle the development GUIs. Given the 2 main compatibility constraints, XML and Oracle, it

was clear that the use of Oracle Forms (as used in the Generic Module framework) or a Java

application based on flat text files (as used in BISCoTO and FEComSA) would not be suitable. This

left the option to either chose Java applications with embedded SQL or Java applications which dealt

only with XML (passing the XML document directly to Oracle for shredding). In effect, the choice

was between fat client applications (incorporating the necessary logic to send the differing parts of an

equipment’s design to different database tables) or thin client applications (knowing nothing about the

underlying data structures, but acting as a basic XML editor). Given that the framework’s internal

data structures and corresponding database tables were likely to change a lot over time, it was decided

to choose the second option and try to base all framework GUIs on a basic XML editor with no

knowledge of the underlying framework or databases.

GUIS FOR EACH PHASE OF THE DEVELOPMENT WORKFLOW
Developing a FESA class, consists of 4 main development phases:

‚ Designing the class structures (internal variables, real-time scheduling, external API, etc)

‚ Deploying the class on a front-end computer

‚ Instantiating 1 or more instances of a deployed class (defining configuration values for

internal variables, real-time scheduling, etc)

‚ Testing over the accelerator middleware

To assist the developer through the framework’s workflow, it was decided to provide a shell

application that incorporated individual applications for each phase. As previously mentioned, the

goal was to transport all framework definitions and data in XML, creating thin GUI’s for each of the 4

10th ICALEPCS 2005; M.Arruat, S. Jackson, J-L. Nougaret, M. Peryt et al. : Use of WML Technologies for ... 4 of 6

development phases. To make this possible, a generic XML editor was created in Swing (Java),

configurable by means of a series of W3C compliant Schema [4] documents. This XML editor

component forms the backbone in the design, deployment and instantiation applications and all

specifics for these applications are defined in their corresponding Schemas. This effectively means

that very little maintenance of the applications is required. Instead, the schemas that drive the generic

editor are edited to reflect changes in the framework and the underlying Java code remains untouched.

AB Controls Oracle Database
Database tables

Design

Tool

Deploy

Tool

Instantiation

Tool

Testing

Tool

based on

Generic XML editor

XML Design

Document

creates

Shredding procedure

XML Deploy

Document

creates

XML Instance

Documents

creates

FESA design

Schema

FESA deploy

Schema

based on

configures configures configures

* FESA Instance Schema

dynamically generated based

on Design document via an

XSL template.

configures

configures

based on

FESA instance

Schema *

Front End

computers

Figure 3: Relationship between GUIs, the gener ic XML editor , the database and the front-end
computers

The final application, the testing tool, is the only one that doesn’t create an XML document. It

therefore doesn’t incorporate the generic XML editor, but is driven by the design document (to find

out the details of the properties in the instrument’s API) and the instance documents (to discover the

names of instances to test). The concept of a thin client is also employed in this application as it uses

XSL templates to convert the design and instance documents into Java property files (the standard

way to configure Java applications). Again, this means that when the structure of the framework’s

design and instance documents changes, it is often sufficient to only change the XSL templates to

produce Java property files understood by the testing application. As with the first 3 applications, this

means that the underlying Java code needs to be rarely touched for maintenance.

10th ICALEPCS 2005; M.Arruat, S. Jackson, J-L. Nougaret, M. Peryt et al. : Use of WML Technologies for ... 5 of 6

SUMMARY
The FESA framework was charged with consolidating all the requirements of its predecessors as well

provide a transparent cross-accelerator framework ready for the LHC era. This has meant that the

framework has passed through many prototyping phases, implying that many aspects including the

fundamental structure of the framework have changed many times. To support such a volatile

environment, the technologies chosen for code-generation and development GUIs had to be made

with care. Schema controlled XML documents combined with XSL and C++ templates have

provided a basis to produce truly generic framework code-generation components and GUIs that are

maintainable by anybody familiar with the Schema/XSL notation. In terms of maintenance, this

means that it is rarely necessary to change underlying Java code in the end-user applications, and the

code-generation parts of the framework are maintainable by a larger subset of developers.

Transferring all database logic to database stored procedures has lead to ultra-thin GUIs. This allows

the database to mutate and change its structure at-will, so long as it is still able to accept the well-

defined XML documents from the framework applications. Insulating the GUIs from the database

creates a clean separation, whilst the intermediate XML Schema (which is understood by both the

database and the generic XML editor) forms the contract between the two framework components.

The FESA framework will continue to grow and change as more requirements for the LHC injection

chain become apparent. With the outlined structure in place for the framework tools, these changes

should be relatively painless for the framework developers, and more importantly, almost transparent

to the users of the framework.

REFERENCES
[1] ICALEPCS 2003 - Common Template And Organisation for CERN Beam Instrumentation Front

End Software Upgrade (BISCoTO)

http://icalepcs2003.postech.ac.kr/db/proc_papers/MP563/MP563.pdf

[2] ICALEPCS 2003 - CERN Front-End Software Architecture for Accelerator Controls (FEComSA)

http://icalepcs2003.postech.ac.kr/Proceedings/PAPERS/WE612.PDF

[3] XSL specification

http://www.w3.org/Style/XSL/

[4] W3C Schema specification

http://www.w3.org/XML/Schema

[5] ICALEPCS 2005 – Equipment Software Modeling for Accelerator Controls

10th ICALEPCS 2005; M.Arruat, S. Jackson, J-L. Nougaret, M. Peryt et al. : Use of WML Technologies for ... 6 of 6

http://icalepcs2003.postech.ac.kr/db/proc_papers/MP563/MP563.pdf
http://icalepcs2003.postech.ac.kr/Proceedings/PAPERS/WE612.PDF

	USE OF XML TECHNOLOGIES FOR DATA-DRIVEN ACCELERATOR CONTROLS
	
	ABSTRACT
	 INTRODUCTION
	FRAMEWORK HARMONISATION
	CAPITALISING ON PRIOR EXPERIENCE FOR FESA
	GUIS FOR EACH PHASE OF THE DEVELOPMENT WORKFLOW
	SUMMARY
	REFERENCES

