
DESIGNING A REUSABLE INSTRUMENT INTERFACE

T. Karcnik, M. Sprogar

Instrumentation Technologies, Solkan, Slovenia

ABSTRACT

The paper describes one possible approach to designing a reusable instrument interface applicable to

a family of individual devices. The main objective is to offer a uniform top level interface accross the

entire family while maintaining the flexibility by utilising clearly designed generic building blocks,

tied together in a flexible way. This approach works also for devices where firmware is an integral part

of the system design. The proposed approach is demonstrated on an actual case.

INTRODUCTION

A control group is faced with several issues when integrating an instrument or a device into a

complex control system (CS). The first step is usually building a standard CS stack for each

instrument, usually involving EPICS, TANGO, etc., and a screen/display for the operator. A typical

hierarchy in a modern device may look like:

- CS software,

- interface between the CS software and instrument system software,

- instrument system software,

- firmware (e.g.: FPGA) and,

- hardware.

However, the glue layer or interface between the CS software and the instrument is typically very

much case specific. For each instrument a dedicated interface has to be written; typically this means at

least a device driver for the selected CS stack. With the recent advancements in the reconfigurable

hardware, e.g. FPGA, it is now possible to use the same physical hardware to architect various

instruments. It would be highly inefficient if all the software up to the CS interface had to be rewritten

for each new application; not to mention maintenance of all the variants.

The following sections explain the principles and demonstrate one solution to the above stated

problem.

STATE OF THE ART

In general, an instrument/device has several input and output channels: e.g. Beam Position Monitor

(BPM) receives pick-up signals and passes calculated results to the CS and/or feedback system. In

addition to obvious elements, there are some common low-level elements built into each device, that

are transparent to a CS user:

- DSP chains,

- temporary high-rate data storage,

- timing and triggering subsystems,

- house-keeping (hardware control) and

- monitoring (e.g: failure control).

Data storage and timing/triggering subsystems are the most generic modules. Regardless of

instrument usage, the timing system remains the same in an accelerator. The data storage subsystem is

used to provide buffering to slow and non real-time data access from the CS.

Contrary to the mentioned subsystems, the DSP chains are of course device dependant. They

connect the hardware defined input/output data channels. Thus, a generalized approach is possible if

the DSP chains are parameterized in a generic way.

Housekeeping and monitoring subsystems are the same if identical hardware is used. Otherwise, the

interface to the higher software layers should be preserved to the maximum extent possible.

All of the above mentioned tasks are executed in a hard real-time environment and are thus not

suitable for a general purpose computer. For modest speeds, a real-time computer suffices, while for

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.085-5 (2005)

cutting edge performance these tasks are implemented in the hardware, using FPGA’s in the most

cases.

The functionality implemented in hardware is complemented by the software stack. A System-on-

Chip (SoC) or a Single Board Computer (SBC) is used extensively to provide a standard interface to

the control system. Both are running an embedded operating system with network support. The system

software interfaces hardware on one side and CS on the other. System software relies on well defined

interfaces on both sides in order to assure portability of the system software and facilitate maintenance

of the CS interface across a range of instruments. An excellent example of a portable interface

connecting data consumers to data providers is ODBC, which is well established and a de-facto

standard for cross-operability in the database business. Since the system software mirrors the hardware

functionality it is therefore essential that the low level functionality adaptations are kept at the

minimum.

As a side benefit, the amount of work needed to maintain the system and low level software is kept

at the minimum, thus enabling faster development cycles and easier maintenance.

CASE STUDY

Instrumentation Technologies delivers a family of instruments under the Libera trademark. Two

representatives are the Libera Electron Beam Position Processor (EBPP) and Libera Bunch-by-Bunch

Feedback Processor (BBFP). The two are based on similar hardware platforms: a digital board

designed around the Xilinx FPGA Virtex II Pro and a Single Board Computer. However, the analogue

front-ends are different. In both cases, the signals are eventually delivered to the FPGA after the A/D

conversion.

The data flows are similar in both cases. Figure 1 shows the data flow for the Libera EBPP.

DDC

From ADCs

Additional
Filtering &
Decimation

Circular
Buffer

@Rev.
Frequency

Additional
Filtering &

Decimation

@Fast

Feedback
Frequency

@Slow
Acquisition
Frequency

Optional

Filtering &
Decimation
(BN Mode)

Data on Demand
Post Mortem

Fast Feedback

Slow Acquisition

…. Data on Demand

…. Continuous Data Flow

Figure 1: Libera EBPP data flow

The sampled data is passed through the DDC and then divided into three branches:

- history buffer for Data-on-Demand,

- two continuous data streams for:

o Fast Feedback and,

o Slow Acquisition.

The output from Data-on-Demand and Slow Acquisition is passed to the CS, using SBC. Contrary to

that, the Fast Feedback output is too fast and is dealt with at the FPGA level instead.

The data flow for Libera BBFP is similar.

10th ICALEPCS 2005; T.Karcnik, M.Sprogar et al. : Designing a Reusable Instrument Interface 2 of 4

Filter

From ADCs

Optional

filtering

Buffer

Optional

Filtering &
Decimation

To SBC

To DAC

…. Data on Demand

…. Continuous Data Flow

Figure 2: Libera BBFP data flow

The fast continuous stream is again dealt with at the FPGA level, while the Data-on-Demand is

again passed to the SBC and then CS.

Although the functionality and hardware of both instruments are vastly different, some similarities

exist:

- data flow is similar and,

- data handling resembles.

The differences, for instance, include initialization and configuration.

The instrument software relies on a clearly designed software structure. The software structure is

shown in figure 3.

EPICSUSER PROGRAM LIBERA SERVER

CSPI

LINUX KERNEL

LINUX DRIVER

DIGITAL BOARD

FPGA INTERFACE

GNU/Linux on SBC

Figure 3: Software structure

The SBC computer runs a stripped down GNU/Linux operating system. All software interfacing the

CS runs in user-space and connects to the hardware using a device driver integrated into the kernel.

The most important and visible part from the end user point of view is the Control System

Programming Interface (CSPI) library. It provides a consistent C API, making low level details

transparent for an application developer. The core of the CSPI is the same across the entire family of

Libera instruments. Instrument specifics such as fast feedback configuration for Libera EBPP are

modularized and tied to the core using an internal interface. CSPI together with a standard

environment and GCC based development tool-chain forms a highly efficient way of instrument

integration into the accelerator control system.

Since the CSPI is consistent across the range of instruments, the same is then true for a custom

application interfacing the CS. A new member of the Libera family requires only minor changes to, for

example, the EPICS device driver. The necessary modifications can be easily dealt with at compile

time. Thus the same code base can be used for all instruments using the CSPI library.

10th ICALEPCS 2005; T.Karcnik, M.Sprogar et al. : Designing a Reusable Instrument Interface 3 of 4

CONCLUSIONS

In order to minimize the variations required by various tasks several guidelines must be followed:

- the system software must provide a consistent, well thought-out interface;

- the real-time and non real-time tasks must be clearly separated;

- FPGA code must use well defined building blocks and,

- all components must be designed with modularity as one of the primary goals.

With all these requirements met, it is possible to cover a range of functionalities with a near-zero

modifications to the high-level, end-user software.

A case study was presented where the principles described above were utilized to achieve the

desired goals for a family of products that share similar hardware platform and are based on the same

source code. The design follows the principles described above.

10th ICALEPCS 2005; T.Karcnik, M.Sprogar et al. : Designing a Reusable Instrument Interface 4 of 4

