
DATA-DRIVEN USER INTERFACES USING ORACLE PORTAL

T. Pal

Paul Scherrer Institute, 5232 Villigen, Switzerland

ABSTRACT

 Oracle Portal is being used as a development platform for applications requiring relational

database access for the control system and operation of the accelerator facilities at the Paul

Scherrer Institute (PSI). The underlying technology is based on portlets and dynamic, thin client

HTML representation of the database information. Prototype, reusable code constructs written

in PL/SQL and JavaScript have been developed.

INTRODUCTION

 Web application development for the control and operation of the accelerator infrastructure

requires the creation of Graphical User Interfaces (GUIs), with access to real-time variables as

well as to data stored in a relational database. This is an important customization effort,

involving multiple design, coding, testing and debugging cycles.

 Although custom applications are difficult as well as resource intensive to include in a portal,

they are the most sought-after. To achieve this, Oracle Portal [1] is used for the development of

content-driven websites that reside entirely in an Oracle database. These sites are composed of

components called portlets that provide access to web-based resources. Web pages, forms,

reports, menus, etc are accessed through a portlet, which can be customized and managed as a

component within Oracle Portal.

IMPLEMENTATION

 One of the primary objectives is to provide a versatile set of interactive Web applications to

access the data and display the query results. Furthermore, a requirement in building the GUI’s

is interportlet communication – where one portlet triggers an event and updates another portlet

on the same page. However, due to the limitations of the wizard building tools of Portal, as well

as the inherent limitations of the Web (such as its stateless nature), it is difficult to store and

maintain variables. To overcome the aforementioned problems, and incorporate the desired

features required by the end-users [2], PL/SQL stored procedures, JavaScript and Oracle’s

Portal Development Kit (PDK) are exploited. These features have been successfully

implemented, albeit preliminary at present, for specific applications [3].

 The Portal framework also provides additional services including Single Sign On (SSO),

content classification, search and security. Access to the development tools is platform

independent.

Portal and Portlets

 The browser-based software environment allows developers to build and deploy complex

applications, with security features encompassing a framework for delivering access to

distributed services and information resources. It employs an entirely web-based environment,

and resides as PL/SQL packages in an Oracle database schema. The basics structure and various

components available to build a Portal application are illustrated schematically in Figure 1.

 The building tools (wizards) allow dynamic HTML representation of the database information.

Components such as data entry forms, reports, charts, calendars, menus and hierarchies are

implicit in figure 1. The sites are composed of the above mentioned reusable components, and

are called portlets. Likewise, tools are provided that allow users to browse database objects (i.e.

tables, views, PL/SQL procedures and functions, indexes, sequences, synonyms, etc).

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.082-5 (2005)

Figure 1: Components of a typical Portal page.

Three-Tier Architecture

 Although the product is conceptually referred to as a single entity, it is in fact composed of

three distinct logical tiers:

 Server-Engine Tier – The Portal part consists of PL/SQL packages and Application

Programming Interfaces (APIs), installed in a schema. Database objects store configuration

information for each user and the sites in general.

 Application-Server Tier – Also referred to as the middle tier. The Oracle Application Server

(9iAS or 10gAS) translates client browser requests, which are received as URLs, into database

procedural calls. The resulting HTML code which is generated is then passed back to the client

browser. The principal component is Oracle’s implementation of the Apache listener, labeled as

(Oracle) HTTP Server. A PL/SQL Gateway is used for communicating with the Server-Engine.

 Client-Browser Tier – This is the presentation and rendering layer for end-user interactions.

The interactions can be a straightforward hyperlink click, or a complex multi-field input form

for processing, with interactive feedback.

Advanced Functionality

 Typical applications under consideration, require between five and eight interactive steps via

form and report components to fully process a transaction during inserts or updates. Portal

components and portlets offer added value to the end users, such as to significantly reduce the

number of navigation steps, to different pages, for completion of a particular task.

 The essence of the problem to build these lightweight, yet fully functional applications lies in

the inherent stateless nature of the Web. Namely, it is difficult to store variables that can

subsequently be referenced, at any point in time. By using the methods of the session storage

API in the PDK, allows an application to store variables for the current session in the database,

and to reference these variables, once they have been defined for the current session. A specific

session store is only available to the current user in the current session [4]. The session values

are lost once the user exits the browser or terminates the session.

Generic Prototype

 As an illustrative example, a page consisting of three inter-communicating portlets is shown in

Figure 2. The upper portlet represents the topmost information of a hierarchical structure of data

(generic), for which the drill-down details are displayed and can be modified in the middle and

lower components respectively.

10th ICALEPCS 2005; T.Pal et al. : Data-Driven User Interfaces Using Oracle Portal 2 of 4

Figure 2: Portlet components on a Portal Page.

 More specifically, upon change of the value in the combo-box of portlet 1, a JavaScript event

handler passes the input parameter(s) to the middle component (portlet 2), which is a report.

After a page refresh, the results are displayed on the same HTML page. Similarly, for the lower

component (portlet 3), which is a form component, and serves to display the details of a record

selected in portlet 2 via a hyperlink. Portlet 3 also contains buttons in order to modify or delete

the displayed record.

 As the preceding example illustrates, portlet-to-portlet communication is based on certain rules

and the parameter values stored. The code snippet below is embedded in the PL/SQL (insert)

event handler of the form component for portlet 1:

 It serves to illustrate the relative simplicity by which the field values can be extracted

dynamically and stored by reference to an alias in a given session, identified by a set of labels.

Similarly, to get values, an example is shown in the function below, stored in the database, and

is reusable in its invocation:

declare

 v_param number;

 v_session portal.wwsto_api_session;

begin

 v_param := p_sesion.get_value_as_number (

 p_block_name => ‘DEFAULT’,

 p_attribute_name => ‘A_VAL_IN’);

 v_session := portal.wwsto_api_session.load_session(‘LABEL_1’, ‘LABEL_2’);

 v_sesson.set_attribute(‘PARAM’, v_param);

 v_sesion.save_sesion;

end;

create or replace function function_name return number as

 v_session portal.wwsto_api_session;

 v_return number;

begin

 v_session := portal.wwsto_api_session.load_session(‘LABEL_1’, ‘LABEL_2’);

 v_return := v_session.get_attribute_as_number(‘PARAM’);

 return(v_return);

end;

10th ICALEPCS 2005; T.Pal et al. : Data-Driven User Interfaces Using Oracle Portal 3 of 4

 Noteworthy is also the (Oracle) Portal’s implementation and usage of the direct access URL or

path aliasing that end-users and developers alike can enter to get to a specific item, document,

page, category, or perspective. This is formed as follows:

http://<hostname>:<portnumber>/pls/<dad>/url/page/<pagegroupname>/<objectname>

where all variables have their usual meaning, and <dad> is the database descriptor, which

contains information on how to connect to the database portal instance.

SUMMARY AND CONCLUSION

 Delivering custom applications, within a rapid time scale is a challenge, given the resource

typically available. Empirically, the development and deployment of GUIs have taken the

majority fraction (approximately two-thirds) of the total time resource. From our experience, it

is unlikely that this fraction can be reduced dramatically in the future, as it is dominated by the

development and testing time for the site-specific requirements. However, the use of proprietary

tools supplied with Oracle Portal, in conjunction with the usage of JavaScript allow us to

reconcile the often conflicting requirements of end-user customization with respect to ease of

development for applications, requiring database access in addition to real-time variables, in the

controls and operations of the accelerator complex at the PSI.

REFERENCES

 [1] Oracle Corporation, http://www.oracle.com

 [2] “Database Applications for Control System Hardware Management”, T. Pal et al., PSI

Scientific and Technical Report 2003, Volume VI, Villigen, Switzerland, ISSN 1423-7350,

March 2004

 [3] “Data-Driven User Interfaces Using Oracle Portal”, T. Pal et al., PSI Scientific and

Technical Report 2004, Volume VI, Villigen, Switzerland, ISSN 1423-7350, March 2005.

 [4] “Oracle 9i Application Server and Oracle Portal”, P. Brassington, MFG Systems

Corporation, USA (2002).

10th ICALEPCS 2005; T.Pal et al. : Data-Driven User Interfaces Using Oracle Portal 4 of 4

